首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the morphological changes of horizontal cells after postnatal photoreceptor degeneration in the developing FVB/N mouse retina, using immunocytochemistry with anti-calbindin D-28K. From postnatal day 14 (P14) onwards, processes emerging from horizontal cells descend into the inner plexiform layer (IPL) and ramify mainly in stratum 1 of the IPL. Electron microscopy revealed that the descending processes make synaptic contacts with bipolar cells in the outer plexiform layer. Our results clearly demonstrate that loss of photoreceptor cells induces the reorganization of horizontal cell processes in the retinas of FVB/N mice as they mature.  相似文献   

2.
We have investigated and further characterized, in the rabbit retina, the synaptic connectivity of the ON-type cone bipolar cells that are immunoreactive for an antibody against the neurokinin-1 receptor (NK1R). NK1R-immunoreactive bipolar cell axons terminate in stratum 4 of the inner plexiform layer. The axons of NK1R-positive bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and from putative AII amacrine cells via gap junctions. The major outputs from NK1R-positive bipolar cells make contacts with amacrine cell processes. The most frequent postsynaptic dyads comprise two amacrine cell processes. Double-labeling experiments with antibodies against NK1R and either calretinin or glycine have demonstrated that NK1R-immunoreactive bipolar cells form gap junctions with AII amacrine cells. Thus, NK1R-positive cone bipolar cells, together with calbindin-positive cone bipolar cells, may play an important role in transferring rod signals to the ON-type ganglion cells of the cone pathway in the rabbit retina.I.-B. Kim and M.R. Park contributed equally to this work.This work was supported by the Ministry of Science and Technology of Korea (grant no. M1-0108-00-0059; Neurobiology Support Grant).  相似文献   

3.
Gap junctions in AII amacrine cells of mammalian retina participate in the coordination of the rod and cone signaling pathway involved in visual adaptation. Upon stimulation by light, released dopamine binds to D(1) receptors on AII amacrine cells leading to increased intracellular cAMP (cyclic adenosine monophosphate) levels. AII amacrine cells express the gap junctional protein connexin36 (Cx36). Phosphorylation of Cx36 has been hypothesized to regulate gap junctional activity of AII amacrine cells. However, until now in vivo phosphorylation of Cx36 has not been reported. Indeed, it had been concluded that Cx36 in bovine retina is not phosphorylated, but in vitro phosphorylation for Cx35, the bass ortholog of Cx36, had been shown. To clarify this experimental discrepancy, we examined protein kinase A (PKA)-induced phosphorylation of Cx36 in mouse retina as a possible mechanism to modulate the extent of gap junctional coupling. The cytoplasmic domains of Cx36 and the total Cx36 protein were phosphorylated in vitro by PKA. Mass spectroscopy revealed that all four possible PKA consensus motifs were phosphorylated; however, domains point mutated at the sites in question showed a prevalent usage of Ser-110 and Ser-293. Additionally, we demonstrated that Cx36 was phosphorylated in cultured mouse retina. Furthermore, activation of PKA increased the level of phosphorylation of Cx36. cAMP-stimulated, PKA-mediated phosphorylation of Cx36 protein was accompanied by a decrease of tracer coupling between AII amacrine cells. Our results link increased phosphorylation of Cx36 to down-regulation of permeability through gap junction channels mediating light adaptation in the retina.  相似文献   

4.
We applied a series of selective antibodies for labeling the various cell types in the mammalian retina. These were used to identify the progressive loss of neurons in the FVB/N mouse, a model of early onset retinal degeneration produced by a mutation in the pde6b gene. The immunocytochemical studies, together with electroretinogram (ERG) recordings, enabled us to examine the time course of the degenerative changes that extended from the photoreceptors to the ganglion cells at the proximal end of the retina. Our study indicates that photoreceptors in FVB/N undergo a rapid degeneration within three postnatal weeks, and that there is a concomitant loss of retinal neurons in the inner nuclear layer. Although the loss of rods was detected at an earlier age during which time M- and S-opsin molecules were translocated to the cone nuclei; by 6 months all cones had also degenerated. Neuronal remodeling was also seen in the second-order neurons with horizontal cells sprouting processes proximally and dendritic retraction in rod-driven bipolar cells. Interestingly, the morphology of cone-driven bipolar cells were affected less by the disease process. The cellular structure of inner retinal neurons, i.e., ChAT amacrine cells, ganglion cells, and melanopsin-positive ganglion cells did not exhibit any gross changes of cell densities and appeared to be relatively unaffected by the massive photoreceptor degeneration in the distal retina. However, Muller cell processes began to express GFAP at their endfeet at p14, and it climbed progressively to the cell’s distal ends by 6 months. Our study indicates that FVB/N mouse provides a useful model with which to assess possible intervention strategies to arrest photoreceptor death in related diseases.  相似文献   

5.
6.
Summary Zinc is a modulator of glutamatergic inputs in the hippocampus. In the retina, however, we previously reported that endogenous zinc is present in the non-glutamatergic neural processes and earlier electrophysiological studies suggest that zinc is a modulator of inhibitory signaling pathways, which are mediated by glycine and GABA. AII amacrine cells, a subpopulation of glycinergic amacrine cells, are identified by selective immunoreactivity for parvalbumin in the rat retina. In the present study, therefore, we focused on whether zinc is present in AII amacrine cells using silver amplification combined with immunohistochemistry in the rat retina. We also examined whether zinc modulate glycine response in the rat retina by the patch clamp technique. Association of silver precipitates with the parvalbumin-immunoreactive neural processes was observed at the ultrastructural level. We also found that zinc existed in the neural processes which were not parvalbumin-immunoreactive. Glycine-induced responses were augmented when the concentration of Zn2+ was below 10 M, but inhibited at Zn2+ concentrations of 50 M or more. Our results suggest the notion that zinc in neural processes of retinal neurons modulates the inhibitory signaling pathway, particularly that mediated by glycine receptors in AII amacrine cells.  相似文献   

7.
8.
9.
Veruki ML  Hartveit E 《Neuron》2002,33(6):935-946
AII (rod) amacrine cells in the mammalian retina are reciprocally connected via gap junctions, but there is no physiological evidence that demonstrates a proposed function as electrical synapses. In whole-cell recordings from pairs of AII amacrine cells in a slice preparation of the rat retina, bidirectional, nonrectifying electrical coupling was observed in all pairs with overlapping dendritic trees (average conductance approximately 700 pS). Coupling displayed characteristics of a low-pass filter, with no evidence for amplification of spike-evoked electrical postsynaptic potentials by active conductances. Coincidence detection, as well as precise temporal synchronization of subthreshold membrane potential oscillations and TTX-sensitive spiking, was commonly observed. These results indicate a unique mode of operation and integrative capability of the network of AII amacrine cells.  相似文献   

10.
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF), which is the neurotrophic factor that influences the plasticity of synapses in the central nervous system. We sought to determine whether BDNF influences the network of dopaminergic amacrine cells in the axotomized rat retina, by immunocytochemistry with an anti-tyrosine hydroxylase (TH) antiserum. In the control retina, we found two types of TH-immunoreactive amacrine cells, type I and type II, in the inner nuclear layer adjacent to the inner plexiform layer (IPL). The type I amacrine cell varicosities formed ring-like structures in contact with AII amacrine cell somata in stratum 1 of the IPL. In the axotomized retinas, TH-labeled processes formed loose networks of fibers, unlike the dense networks in the control retina, and the ring-like structures were disrupted. In the axotomized retinas treated with BDNF, strong TH-immunoreactive varicosities were present in stratum 1 of the IPL and formed ring-like structures. Our data suggest that BDNF affects the expression of TH immunoreactivity in the axotomized rat retina and may therefore influence the retinal dopaminergic system. E.-J. Lee and M.-C. Song contributed equally to this work. This work was supported by Korea Research Foundation (grant no. E00004, 2004).  相似文献   

11.
Histochemical studies on catecholaminergic cells were conducted with the carp (Cyprinus carpio) retina. Catecholamine (CA)-containing cell bodies appear sparsely distributed among amacrine cells in the innermost cellular row of the inner nuclear layer (INL) and occasionally in the outer half part of the inner plexiform layer (IPL); only exceptionally are they found among ganglion cells. The fluorescent cells interspersed with the amacrine cells and in the IPL send their fiber processes toward both the outer plexiform layer (OPL) and the IPL; the fine fibers form dense networks in the INL and IPL. Pretreatment of the fish with intramuscular injection of reserpine (20 hr prior to enucleation) completely depleted CA from the retina. The fluorescence of catecholaminergic cells was enhanced, and the number of fluorescent cells visible was increased, by intravitreous injection ofl-DOPA, DA, and NA (3 hr prior to enucleation). A combination of pretreatment with intramuscular reserpine and intravitreous NA was particularly effective. These results indicate that catecholamines may play an important role in the modulation of the membrane potential of horizontal cells.  相似文献   

12.
Previous findings have shown that P2X-purinoceptor-mediated signaling pathways regulate the release of ACh in the retina. We previously reported the existence of immunoreactivity for P2X1-, P2X2-, P2X4-, and P2X7-purinoceptors in mouse retina and speculated that P2X2 and P2X7-purinoceptors may modulate the activity of cholinergic amacrine cells. In the present study, we used an immunohistochemical technique to examine whether P2X3-, P2X5, and P2X6-purinoceptors are also important for the modulation of cholinergic amacrine cells in mouse retina. Immunoreactivity for P2X3-, P2X5-, and P2X6-purinoceptors was observed in mouse retina. Immunoreactivity for P2X3- purinoceptors was observed in the dendrites of cholinergic amacrine cells. Immunoreactivity for P2X5-purinoceptors existed in the soma of cholinergic amacrine cells. P2X6-purinoceptor immunoreactivity was not colocalized with the cholinergic amacrine cells. We concluded that, among the three P2X-purinoceptors that were examined, P2X3-purinoceptors seem to affect the function of cholinergic amacrine cells in the mouse retina.  相似文献   

13.
The synaptic connectivity between rod bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina was studied using two immunocytochemical markers. Rod bipolar cells were stained with an antibody specific for protein kinase C (PKC, α isoenzyme), and GABAergic neurons were stained with an antiserum specific for glutamic-acid decarboxylase (GAD). Some amacrine cells were also labeled with the anti-PKC antiserum. All PKC-labeled amacrine cells examined showed GABA immunoreactivity, indicating that PKC-labeled amacrine cells constitute a subpopulation of GABAergic amacrine cells in the rat retina. A total of 150 ribbon synapses established by rod bipolar cells were observed in the IPL. One member of the postsynaptic dyads was always an unlabeled AII amacrine cell process, and the other belonged to an amacrine-cell process showing GAD immunoreactivity. The majority (n=92) (61.3%) of these processes made reciprocal synapses back to the axon terminals of rod bipolar cells. In addition, 78 conventional synapses onto rod bipolar axons were observed, and among them 52 (66.7%) were GAD-immunoreactive. Thus GABA provides the major inhibitory input to rod bipolar cells.  相似文献   

14.
There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X2-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y1-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y1-purinoceptors. P2Y1-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y1-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y1-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y1-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y1-purinoceptors was not affected by visual experience. We concluded that P2Y1-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.  相似文献   

15.
Using immunocytochemistry, we have investigated the localization of CD15 in the rat retina. In the present study, two types of amacrine cell in the inner nuclear layer (INL) and some cells in the ganglion cell layer were labeled with anti-CD15 antisera. Type 1 amacrine cells have large somata located in the INL, with long and branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Type 2 cells have a smaller soma and processes branching in stratum 1 of the IPL. A third population showing CD15 immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer. The densities of type 1 and type 2 amacrine cells were 166/mm(2) and 190/mm(2) in the central retina, respectively. The density of displaced amacrine cells was 195/mm(2). Colocalization experiments demonstrated that these CD15-immunoreactive cells exhibit gamma-aminobutyric acid and neuronal nitric oxide synthase (nNOS) immunoreactivities. Thus, the same cells of the rat retina are labeled by anti-CD15 and anti-nNOS antisera and these cells constitute a subpopulation of GABAergic amacrine cells.  相似文献   

16.
In the mammalian retina, information concerning various aspects of an image is transferred in parallel, and cone bipolar cells are thought to play a major role in this parallel processing. We have examined the synaptic connections of calbindin-immunoreactive (IR) ON cone bipolar cells in the inner plexiform layer (IPL) of rabbit retina and have compared these synaptic connections with those that we have previously described for neurokinin 1 (NK1) receptor-IR cone bipolar cells. A total of 325 synapses made by calbindin-IR bipolar axon terminals have been identified in sublamina b of the IPL. The axons of calbindin-IR bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and are coupled to putative AII amacrine cells via gap junctions. The major output from calbindin-IR bipolar cells is to amacrine cell processes. These data resemble our findings for NK1 receptor-IR bipolar cells. However, the incidences of output synapses to ganglion cell dendrites of calbindin-IR bipolar cells are higher compared with the NK1-receptor-IR bipolar cells. On the basis of stratification level and synaptic connections, calbindin-IR ON cone bipolar cells might thus play an important role in the processing of various visual aspects, such as contrast, orientation, and approach sensing, and in transferring rod signals to the ON cone pathway.  相似文献   

17.
CRB3 (Crumbs homologue 3), a member of the CRB protein family (homologous to the Drosophila Crumbs), is expressed in different epithelium-derived cell types in mammals, where it seems to be involved in regulating the establishment and stability of tight junctions and in ciliogenesis. This protein has been also detected in the retina, but little is known about its localization and function in this tissue. Our goal here was to perform an in-depth study of the presence of CRB3 protein in the mouse retina and to analyze its expression during photoreceptor ciliogenesis and the establishment of the plexiform retinal layers. Double immunofluorescence experiments for CRB3 and well-known markers for the different retinal cell types were performed to study the localization of the CRB3 protein. According to our results, CRB3 is present from postnatal day 0 (P0) until adulthood in the mouse retina. It is localized in the inner segments (IS) of photoreceptor cells, especially concentrated in the area where the connecting cilium is located, in their synaptic terminals in the outer plexiform layer (OPL), and in sub-populations of amacrine and bipolar cells in the inner plexiform layer (IPL).  相似文献   

18.

Background

Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development.

Methodology/Principal Findings

The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6. Prominent immunostaining was detected in GABAergic, but not in AII glycinergic, amacrine cell subpopulations of the rat and mouse retina. Amacrine cell somata displayed a distinct staining pattern with the Sez-6 antibody: a discrete, often roughly triangular-shaped bright spot positioned between the nucleus and the apical dendrite superimposed over weaker general cytoplasmic staining. Displaced amacrines in the ganglion cell layer were also positive for Sez-6 and weaker staining was occasionally observed in neurons with the morphology of alpha ganglion cells. Two distinct Sez-6 positive strata were present in the inner plexiform layer in addition to generalized punctate staining. Certain inner nuclear layer cells, including bipolar cells, stained more weakly and diffusely than amacrine cells, although some bipolar cells exhibited a perinuclear “bright spot” similar to amacrine cells. In order to assess the role of Sez-6 in the retina, we analyzed the morphology of the Sez-6 knockout mouse retina with immunohistochemical markers and compared ganglion cell dendritic arbor patterning in Sez-6 null retinae with controls. The functional importance of Sez-6 was assessed by dark-adapted paired-flash electroretinography (ERG).

Conclusions

In summary, we have reported the detailed expression pattern of a novel retinal marker with broad cell specificity, useful for retinal characterization in rodent experimental models. Retinal morphology, ganglion cell dendritic branching and ERG waveforms appeared normal in the Sez-6 knockout mouse suggesting that, in spite of widespread expression of Sez-6, retinal function in the absence of Sez-6 is not affected.  相似文献   

19.
Wu XH  Deng QQ  Jiang SX  Yang XL  Zhong YM 《Peptides》2012,33(2):291-297
Somatostatin (SRIF), as a neuroactive peptide in the CNS, may act as a neuromodulator through activation of five specific receptor subtypes (sst(1)-sst(5)). In this work we conducted a comparative study of the expression of sst(5) in mouse and bullfrog retinas by immunofluorescence double labeling. Basically, the expression profiles of sst(5) in the retinas of the two species were similar. That is, in the inner retina sst(5) was localized to dopaminergic and cholinergic amacrine cells, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, and cells in the ganglion cell layer, whereas in the outer retina immunostaining for sst(5) was observed in horizontal cells. However, a more widespread, abundant distribution of labeling for sst(5), as compared to mouse retina, was seen in bullfrog retina: strong labeling for sst(5) was diffusely distributed in both outer and inner plexiform layers (OPL and IPL) in the bullfrog retina, but the labeling was only observed in the IPL of the mouse retina. In addition, bullfrog photoreceptors, both rods and cones, but not mouse ones, were labeled by sst(5). In combination with the experiments showing that SRIF-immunoreactivity was mainly found in the inner retina, our results suggest that SRIF, released from SRIF-containing cells in the inner retina, may play a neuromodulatory role in both outer and inner retina mediated by volume transmission via sst(5) in bullfrog retina, while the SRIF action may be largely restricted to the mouse inner retina.  相似文献   

20.
Using immunocytochemistry, morphometry and electron microscopy, we have investigated the distribution and characteristics of CD15-immunoreactive (IR) neurons in the guinea pig retina. In the present study, two types of amacrine cells, including interplexiform cells in the inner nuclear layer (INL) and some cells in the ganglion cell layer (GCL), were labeled with anti-CD15 antisera. Type 1 amacrine cells had large somata located in the INL, with long and branched processes ramifying mainly in strata 4 and 5 of the inner plexiform layer (IPL). Somata of type 2 cells had smaller diameters, and were also located in the INL. Their processes stratified in stratum 1. The densities of type I and type 2 amacrine cells increased from 152.8+/-36.7/mm2 and 160.6+/-61.7/mm2 in the peripheral retina, to 404.3+/-41.5/mm2 and 552.2+/-72.2/mm2 in the central retina, respectively. Cells in the GCL exhibiting CD15 immunoreactivity were rarely observed. Colocalization experiments, using consecutive semi-thin sections, demonstrated that these CD15-IR amacrine cells exhibited gamma-aminobutyric acid (GABA) immunoreactivity. In addition, the processes of the type 1 cells formed one member of the postsynaptic dyads that are formed in the axon terminals of rod bipolar cells. Most of these processes made reciprocal synapses back to the axon terminals of the rod bipolar cells. Thus, CD15-IR amacrine cells constitute a subpopulation of GABAergic amacrine cells in the guinea pig retina, and the type 1 cells among them provide the inhibitory input to rod bipolar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号