首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A series of 6-arylamino-5-chloro-benzimidazole-4,7-diones were synthesized and tested for their inhibitory activity on the rat aortic smooth muscle cell (RAoSMC) proliferation. Among them, 6-arylamino-5-chloro-2-methyl-benzimidazole-4,7-diones exhibited potent antiproliferative activity. Benzimidazole-4,7-dione 2c activated SAPK/JNK signaling pathway in the RAoSMCs.  相似文献   

2.
A series of 6-arylamino-2,3-bis(pyridin-2-yl)-7-chloro-quinoxaline-5,8-diones were synthesized and evaluated for their inhibitory activity on the rat aortic smooth muscle cell (RAoSMC) proliferation. The quinoxaline-5,8-diones exhibited a potent antiproliferative activity. Further mechanistic study revealed that the inhibitory effect of one representative quinoxaline-5,8-dione on SMC proliferation was mediated by modulation of the extracellular signal-regulated kinase 1/2 signaling pathway in the RAoSMCs.  相似文献   

3.
A series of 2-phenyl-1H-benzo[d]imidazole-4,7-diones were synthesized and tested for their inhibitory activity on the PDGF-stimulated proliferation of rat aortic vascular smooth muscle cells. Among the tested compounds, 6-arylthio-5-chloro-2-phenyl-1H-benzo[d]imidazole-4,7-diones exhibited an potent antiproliferative activity.  相似文献   

4.
5-Arylamino-1H-benzo[d]imidazole-4,7-diones were synthesized and tested for their inhibitory activities on the proliferation of human umbilical vein endothelial cells (HUVECs) and the smooth muscle cells (SMCs). Among them, several 1H-benzo[d]imidazole-4,7-diones exhibited the selective antiproliferative activity on the HUVECs. Further mechanistic study revealed that the inhibitory effect of one representative 1H-benzo[d]imidazole-4,7-dione 2b on HUVEC proliferation was mediated by the activation of p38 signaling pathway in the HUVECs.  相似文献   

5.
In rabbit aortic smooth muscle cells (SMC), protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited the whole blood serum (WBS)-induced DNA synthesis. The inhibitory action of TPA was mimicked by another protein kinase C-activating phorbol ester, phorbol-12,13-dibutyrate (PDBu), but not by 4 alpha-phorbol-12,13- didecanoate known to be inactive for this enzyme. Prolonged treatment of the cells with PDBu caused the down-regulation of protein kinase C. In these cells, WBS still induced DNA synthesis but the inhibitory action of TPA was abolished. DNA synthesis started at 18 h and reached a maximal level 24 h after the addition of WBS. TPA inhibited the WBS-induced DNA synthesis even when added 12 h after the addition of WBS. These results suggest that protein kinase C has an antiproliferative action in rabbit aortic SMC and that this action is attributed to the inhibition of the progression from the late G1 into S phase of the cell cycle. TPA also inhibited the phospholipase C-mediated hydrolysis of phosphoinositides which was induced by WBS within several minutes, but the relevance of this effect on the antiproliferative action of TPA is uncertain.  相似文献   

6.
Expression of both basic fibroblast growth factor (bFGF) and FGF receptors (FGFR) by vascular smooth muscle cells suggests that autocrine FGF signaling mechanisms may have important functions. Inhibition of smooth muscle cell bFGF expression provokes apoptosis, suggesting that endogenous bFGF generates an anti-apoptotic signal. The purpose of this study was to determine whether the survival function of endogenous bFGF requires signaling through FGFR. A recombinant adenovirus encoding a truncated murine FGFR-1 lacking the kinase domain (DN-FGFR) efficiently expressed the transgene in cultured rat aortic smooth muscle cells. The truncated receptor acted in a dominant negative fashion to effectively prevent receptor-mediated signaling, assessed by phosphorylation of p42/p44 MAP kinase. Expression of DN-FGFR provoked apoptosis of SMC in a dose-dependent fashion that was insensitive to recombinant bFGF but could be rescued by platelet derived growth factor or epidermal growth factor. Heterologous growth factor rescue was inhibited by PD98059, an inhibitor of MEK (MAP kinase-kinase). These data demonstrate that inhibition of FGF receptor activation results in apoptosis and suggest that an intact autocrine FGF signaling loop is required for vascular smooth muscle cell survival in vitro. These findings also implicate the Ras/Raf/MEK /MAP kinase cascade in generating or sustaining the survival signal. The functional significance of an autocrine FGF signaling loop in non-transformed cells has important implications for cardiovascular development, remodeling and disease. J. Cell. Physiol. 177:58–67, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Angiotensin II (ANG II) is a multifunctional hormone that exerts potent vasoconstrictor and hypertrophic effects on vascular smooth muscle. Here, we demonstrate that the p38 mitogen-activated protein (MAP) kinase pathway is involved in ANG II-induced vascular contraction. Addition of ANG II to rat aortic smooth muscle cells (SMC) caused a rapid and transient increase of p38 activity through activation of the AT(1) receptor subtype. This response to ANG II was strongly attenuated by pretreating cells with antioxidants and diphenylene iodonium and was mimicked by exposure of cells to H(2)O(2). Stimulation of p38 by ANG II resulted in the enzymatic activation of MAP kinase-activated protein (MAPKAP) kinase-2 and the phosphorylation of heat shock protein 27 (HSP27) in aortic SMC. Pretreatment of cells with the specific p38 MAP kinase inhibitor SB-203580 completely blocked the ANG II-dependent activation of MAPKAP kinase-2 and phosphorylation of HSP27. ANG II also caused a robust activation of MAPKAP kinase-2 in the intact rat aorta. Incubation with SB-203580 significantly decreased the potency of ANG II to induce contraction of rat aortic rings and depressed the maximal hormone response. These results suggest that the p38 MAP kinase pathway selectively modulates the vasoconstrictor action of ANG II in vascular smooth muscle.  相似文献   

8.
CeReS-18, a cell regulatory sialoglycopeptide, has been shown to inhibit proliferation of a wide array of target cells. In the present study, the effect of CeReS-18 on vascular smooth muscle cell (SMC) proliferation was characterized in cultured rat aorta SMCs (A7r5). More extensively, the effect of CeReS-18 on platelet-derived growth factor (PDGF)-induced SMC migration was examined using a modified Boyden's chamber assay. CeReS-18 inhibits both SMC proliferation and migration in a concentration-dependent, calcium-sensitive, and reversible manner. Furthermore, cells preincubated with the inhibitor had an increased sensitivity to CeReS-18-mediated inhibition of SMC migration. Immunoprecipitation and in vitro phosphorylation assays demonstrated that MAP kinase activity was inhibited in the CeReS-18-treated cells and pretreatment with CeReS-18 suppressed the activation of MAP kinase stimulated by PDGF. However, it is not likely that the suppression of the MAP kinase pathway was directly responsible for the ability of CeReS-18 to inhibit migration of the rat aorta smooth muscle cells since a MEK-specific inhibitor, PD98059, did not influence A7r5 cell migration.  相似文献   

9.
In cultured rabbit aortic smooth muscle cells (SMC), 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in the presence of plasma-derived serum to a small extent, but inhibited markedly the rabbit whole blood serum (WBS)-, platelet-derived growth factor (PDGF)- and epidermal growth factor-induced DNA synthesis. Phorbol-12,13-dibutyrate (PDBu) mimicked this antiproliferative action of TPA, but 4 alpha-phorbol-12,13-didecanoate was inactive in this capacity. Prolonged treatment of the cells with PDBu caused the partial down-regulation of protein kinase C. In these protein kinase C-reduced cells, WBS still induced DNA synthesis, but TPA did not inhibit the WBS-induced DNA synthesis. We have previously shown that protein kinase C is involved at least partially in the PDGF-induced DNA synthesis in rabbit aortic SMC. The present results together with this earlier observation suggest that protein kinase C has not only a proliferative but also an antiproliferative action in rabbit aortic SMC.  相似文献   

10.
A series of 5-arylamino-6-chloro-1H-indazole-4,7-diones were synthesized and evaluated for their inhibitory activity on protein kinase B/Akt. The compounds exhibited a potent Akt1 inhibitory activity. Further mechanistic study revealed that they might have dual inhibitory effects on both activity and phosphorylation of Akt1 in PC-3 tumor cell line.  相似文献   

11.
12.
It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) modulate vascular smooth muscle cell functions. In the present study, we investigated the effect of simvastatin on vascular endothelial growth factor (VEGF) release, and the underlying mechanism, in a rat aortic smooth muscle cell line, A10 cells. Administration of simvastatin increased the VEGF level in rat plasma in vivo. In cultured cells, simvastatin significantly stimulated VEGF release in a dose-dependent manner. Simvastatin induced the phosphorylation of p44/p42 MAP kinase but not p38 MAP kinase or SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). PD98059 and U-0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly reduced the simvastatin-induced VEGF release in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by simvastatin was reduced by PD98059 or U-0126. Moreover, a bolus injection of PD98059 truly suppressed the simvastatin-increased VEGF level in rat plasma in vivo. These results strongly suggest that p44/p42 MAP kinase plays a role at least partly in the simvastatin-stimulated VEGF release in vascular smooth muscle cells.  相似文献   

13.
Incubation of cultured rabbit aortic smooth muscle cells (SMC) with phorbol-12, 13-dibutyrate (PDBu) for 48 h caused the down-regulation of protein kinase C (PKC) to the level of 30-40% of that in the control cells. The proliferative and antiproliferative actions of PKC were abolished in parallel with the loss of the down-regulation-sensitive component of PKC, but the inhibitory actions in the whole blood serum (WBS)-induced phospholipase C (PLC) reactions and intracellular Ca2+ mobilization were not affected. Immunoblot analysis with specific monoclonal antibodies against three PKC isozymes (type I, II and III) revealed that only the type III isozyme was detected in rabbit aortic SMC and that this isozyme completely disappeared after the incubation with PDBu. These results indicate that the type III isozyme is responsible for the proliferative and antiproliferative actions and suggest that the unidentified isozyme(s) is involved in the inhibitory actions in the WBS-induced PLC reactions and intracellular Ca2+ mobilization in rabbit aortic SMC.  相似文献   

14.
15.
The abnormal proliferation and migration of vascular smooth muscle cells (SMCs) play an important role in the pathology of coronary artery atherosclerosis and restenosis following angioplasty. It was reported that some heterocyclic quinone derivatives such as 6-arylamino-quinoxaline-5,8-diones and 6-arylamino-1H-benzo[d]imidazole-4,7-diones have inhibitory activity on rat aortic smooth muscle cell (RAoSMC) proliferation. To understand the structural basis for antiproliferative activity to design more potent agents, we generated pharmacophore models of representative molecules with high activity using Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD) and aligned a series of compounds to the selected pharmacophore model, then performed three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). Good cross-validated correlations were obtained with CoMFA (resulting in q(2) of 0.734 and r(2) of 0.947) and CoMSIA (resulting in q(2) of 0.736 and r(2) of 0.913). The IC(50) values of the heterocyclic quinone derivatives on RAoSMC exhibited a strong correlation with steric and hydrophobic fields of the 3D structure of the molecules, resulting in the reliable prediction of inhibitory activity of the series of compounds.  相似文献   

16.
17.
18.
The focal adhesion (FAK) non-receptor protein-tyrosine kinase (PTK) links both extracellular matrix/integrin and growth factor stimulation to intracellular signals promoting cell migration. Here we show that both transient and stable overexpression of the FAK C-terminal domain termed FRNK (FAK-related non-kinase) inhibits serum and platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (SMC) migration in wound healing and in vitro Boyden Chamber chemotaxis assays, respectively. Expression of FRNK, but not a point mutant of FRNK (FRNK L1034S), disrupted the formation of a complex containing both FAK and the activated PDGF-beta receptor and resulted in reduced tyrosine phosphorylation of endogenous FAK at the Tyr-397 binding site for Src family PTKs. As demonstrated using FAK-deficient and FAK-reconstituted fibroblasts, FAK positively contributed to PDGF-BB-stimulated ERK2/MAP kinase activity, and in SMCs, ERK2/MAP kinase activity was required for PDGF-BB-stimulated chemotaxis. Stable expression of FRNK but not FRNK L1034S expression in SMCs lowered the extent and duration of stimulated ERK2/MAP kinase activation at low but not at high PDGF-BB concentrations. Importantly, stable expression of FRNK in SMCs did not affect SMC morphology or proliferation in culture. Because the increased migration of vascular SMCs in response to extracellular matrix proteins and growth factors contributes to neointima formation, our results show that FAK inhibition by FRNK expression may provide a novel approach to regulate abnormal vascular SMC migration in vivo.  相似文献   

19.
The potential of a given amount of heparin to inhibit smooth muscle cell (SMC) proliferation can be increased more than 13 fold if quiescent cultures are pretreated with this mucopolysaccharide for 48 h. The large increase in antiproliferative activity was attributable to a 74% inhibition of the first cell cycle traverse of SMC after serum addition. If the mucopolysaccharide was added to SMC coincident with serum, the initial cell cycle traverse was only suppressed by 27%. In both heparin pretreated and nonpretreated SMC cultures, 48 to 72 h elapsed before substantial inhibition was observed. The inhibitory effects of heparin were reversible and inversely proportional to the starting cell density of the cultures. The effects of known heparin binding proteins on the inhibitory capability of heparin were examined. Neither platelet-derived growth factor (PDGF), low density lipoprotein (LDL), nor platelet factor 4 (PF4) were able to reduce the antiproliferative effects. Heparin retained full biological activity in medium containing serum depleted of all heparin binding proteins by heparin-Sepharose chromatography. These results indicate that heparin does not inhibit growth by preventing serum mitogens or nutrients from interacting with SMC. Rather, our data suggest that heparin is slowly internalized by SMC following binding to specific, non-PF4 dissociable sites. Heparin may accumulate intracellularly and block a crucial point in the proliferative machinery of SMC.  相似文献   

20.
Index     
Anticancer role of oxindole compounds is well documented. Here, we synthesized new derivatives of 3-hydroxy-2-oxindole functionalized at position 3 (1a–f) which are expected to have antiproliferative activity in cancer cells. Human prostate cancer cell line (DU145) was treated with the synthesized derivatives at 40-μM concentration for 24, 48, and 72 h. Compounds 1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1d), 5-bromo-1-ethyl-3-hydroxy-1,1′,3,3′-2H,2′H-3,3′-biindole-2,2′-dione (1e), and 5-chloro-1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1f) were found to significantly reduce DU145 cell viability at 48 and 72 h whereas no significant changes were observed up to 24 h. The compounds 1e and 1f showed the most cytotoxicity effect and had a similar antiproliferative activity on DU145 cell line. They have halogen and ethyl substitutions at positions 5 and 1, respectively. The IC50 of compound 1e for DU145 and A375 cells at 48 h was determined. The apoptotic effects and cell cycle progression of compound 1e at 1/2 × IC50 (55 μM) concentration in DU145 cells were investigated by nuclei staining, comet assay, flow cytometry, and scanning electron microscopy (SEM). The results obtained showed that this compound increased the percentage of tail DNA, increased the occurrence of the sub-G1 phase, and induced G2M arrest and apoptosis in DU145 cells after exposure for 48 h to a 55-μM concentration. The SEM images revealed cell contraction at 24 h, cell condensation, plasma membrane blebbing, and formation of apoptotic bodies at 48 and 72 h. These observations suggest that the antiproliferative activity of compound 1e may be to induce apoptosis in DU145 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号