首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of malonamide derivatives was synthesized. These amides were shown to be potent and selective kappa opioid receptor agonists.  相似文献   

2.
A novel series of phenylamino acetamide derivatives was synthesized. These amides were shown to be potent and selective kappa opioid receptor agonists.  相似文献   

3.
TENA, a selective kappa opioid receptor antagonist   总被引:3,自引:0,他引:3  
A number of opioid antagonists (TENA, naloxone, Mr 2266, WIN 44441) were evaluated for their selectivity in antagonizing the effect of mu, kappa, and delta agonists in the guinea pig ileum (GPI) and mouse vas deferens (MVD) preparations. Among these four antagonists, TENA was the most potent and the only ligand which was selective for kappa receptors. In this regard TENA was approximately 27-times more effective in antagonizing the kappa agonist, U-50488H, relative to the mu agonist, morphine, and it was about 5-times more effective against ethylketazocine (EK) relative to morphine. At the same concentration (20 nM) TENA did not significantly antagonize the delta agonist, [D-Ala2,D-Ala5]enkephalin (DADLE), in the MVD. Also, TENA was more effective than naloxone, EK, or U-50488H in protecting kappa receptors from irreversible blockage by beta-CNA. The results of this study indicate that TENA is the most selective kappa antagonist yet reported.  相似文献   

4.
5.
R Quirion  A S Weiss 《Peptides》1983,4(4):445-449
Various proenkephalin-derived peptides such as peptide E and the bovine adrenal medulla peptides BAM-12P and BAM-22P are potent competitors on mu and kappa binding sites in guinea pig brain sections. Moreover, they are all potent agonists in the rabbit vas deferens, a specific kappa opiate receptor bioassay. As described before, dynorphin and some of its fragments are also potent kappa agonists. Our results suggest that not only prodynorphin-derived peptides could act as endogenous kappa ligands but also some proenkephalin-derived peptides such as peptide E.  相似文献   

6.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

7.
A novel series of kappa (kappa) opioid receptor agonists were synthesized by incorporating the key structural features of known kappa opioid agonists while replacing the aryl acetamide portion with substituted amino acid conjugates. Compounds 3j (Ki = 6.7 nM), 3k (Ki = 3.6 nM), 3l (Ki = 4.6 nM), 3m (Ki = 0.83 nM) and 3o (Ki = 2 nM) possessed potent affinities for the kappa opioid receptor in vitro with reasonable selectivity over other opioid receptors.  相似文献   

8.
The profile of opioid activity of E-2078, a synthetic stable dynorphin analog, was examined in the mouse vas deferens bioassay and compared to that of methionine enkephalin and nonpeptide kappa agonists in the absence and in the presence of selective antagonists for the mu-, kappa- and delta-opioid receptor subtypes. The inhibitory action of E-2078 and related kappa agonists was specifically and potently antagonized only by norbinaltorphimine, revealing the presence of kappa receptors in this tissue and the predominant kappa activity of E-2078.  相似文献   

9.
Salvinorin A, a compound isolated from the plant Salvia divinorum, is a potent and highly selective agonist for the kappa opioid receptor. For exploration of its structure and activity relationships, further modifications, such as reduction at the C(4) position, have been studied and a series of salvinorin A derivatives were prepared. These C(4)-modified salvinorin A analogues were screened for binding and functional activities at the human kappa-opioid receptor and several new full agonists have been identified.  相似文献   

10.
Small peptidic kappa agonists were covalently linked to the reactive lysine of the CovX antibody to create compounds having potent activity at the kappa receptor with greatly extended half-life when compared to the parent peptide as exemplified by compound 20.  相似文献   

11.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

12.
Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.  相似文献   

13.
A new series of 3-aryl pyridone based kappa opioid receptor agonists was designed and synthesised, based on an understanding of the classical kappa opioid receptor pharmacophore. The most potent of the new compounds were comparable to U-69,593 in receptor affinity, selectivity and functional agonist effect at the cloned human kappa opioid receptor.  相似文献   

14.
Identification and SAR study of novel series of beta(3)-AR agonists with benzoic acid are described. Conversion of ether linkage position of phenoxybenzoic acid derivative 2b led to compound 7b with moderate beta(3)-AR activity. Further modification in right, center and left parts of compound 7b was investigated to improve the beta(3)-AR potency and selectivity. Compounds 7g and 7k, with the bulky aliphatic-substituted group at 2-position of benzoic acid moiety, were identified as potent and selective beta(3)-AR agonists. In addition, in vivo efficacy of compounds 7g and 7k was exhibited on dog OAB model.  相似文献   

15.
Two novel chemical classes of kappa opioid receptor agonists, chroman-2-carboxamide derivatives and 2,3-dihydrobenzofuran-2-carboxamide derivatives, were synthesized. These agents exhibited high and selective affinity for the kappa opioid receptor.  相似文献   

16.
The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit βarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo.  相似文献   

17.
In an effort to find novel agents which selectively target the kappa opioid receptor (KOPR), we modified the furan ring of the highly potent and selective KOPR agonist salvinorin A. Introduction of small substituents at C-16 was well tolerated. 12-epi-Salvinorin A, synthesized in four steps from salvinorin A, was a selective partial agonist at the KOPR. No clear SAR patterns were observed for C-13 aryl ketones. Introducing a hydroxymethylene group between C-12 and the furan ring was tolerated. Small C-13 esters and ethers gave weak KOPR agonists, while all C-13 amides were inactive. Finally, substitution of oxadiazoles for the furan ring abolished affinity for the KOPR. None of the compounds displayed any KOPR antagonism or any affinity for mu or delta opioid receptors.  相似文献   

18.
2',6'-Dimethyl substitution of the Tyr(1) residue of opioid agonist peptides and deletion of the positively charged N-terminal amino group or its replacement with a methyl group has recently been shown to represent a general structural modification to convert opioid peptide agonists into antagonists. This conversion requires the syntheses of opioid peptide analogues containing either 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid (Dhp) or (2S)-2-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid [(2S)-Mdp] in place of Tyr(1). Using this approach, delta-, kappa- and mu-selective opioid peptide agonist peptides were successfully converted into corresponding delta-, kappa- and mu-selective antagonists, whereby receptor selectivity was often maintained or even improved. Thus, two (2S)-Mdp(1)-analogues of the delta-selective cyclic enkephalin analogue H-Tyr-c[D-Pen-Gly-Phe(pF)-Pen]-Phe-OH turned out to be potent and selective delta antagonists. Most successful was the development of kappa antagonists derived from dynorphin A (Dyn A), including the highly potent and selective kappa-antagonist [(2S)-Mdp(1)]Dyn A(1-11)-NH(2) (dynantin) and the enzymatically stable octapeptide analogue [(2S)-Mdp(1),MeArg(7),D-Leu(8)]Dyn A(1-8)-NH(2). The (2S)-Mdp(1)-analogues of dynorphin B and alpha-neoendorphin also were kappa antagonists and may be useful as pharmacological tools in studies of kappa receptor subtypes. Finally, the Dhp(1)-analogues of the mu-selective cyclic enkephalin analogue H-Tyr-c[N(epsilon ),N(beta)-carbonyl-D-Lys(2),Dap(5)]enkephalinamide and of endomorphin-2 were moderately potent mu opioid antagonists.  相似文献   

19.
A series of prostaglandin DP agonists containing a 3-oxa-15-cyclohexyl motif was synthesized and evaluated in several in vitro and in vivo biological assays. The reference compound ZK 118.182 (9beta-chloro-15-cyclohexyl-3-oxa-omega-pentanor PGF(2alpha)) is a potent full agonist at the prostaglandin DP receptor. Saturation of the 13,14 olefin affords AL-6556, which is less potent but is still a full agonist. Replacement of the 9-chlorine with a hydrogen atom or inversion of the carbon 15 stereochemistry also reduces affinity. In in vivo studies ZK 118.182 lowers intraocular pressure (IOP) upon topical application in the ocular hypertensive monkey. Ester, 1-alcohol, and selected amide prodrugs of the carboxylic acid enhance in vivo potency, presumably by increasing bioavailability. The clinical candidate AL-6598, the isopropyl ester prodrug of AL-6556, produces a maximum 53% drop in monkey IOP with a 1 microg dose (0.003% w/w) using a twice-daily dosing regime. Synthetically, AL-6598 was accessed from known intermediate 1 using a novel key sequence to install the cis allyl ether in the alpha chain, involving a selective Swern oxidative desilylation of a primary silyl ether in the presence of a secondary silyl ether. In this manner, 136 g of AL-6598 was synthesized under GMP conditions for evaluation in phase I clinical trials.  相似文献   

20.
In an effort to discover oral inverse agonists of RORγt to treat inflammatory diseases, a new 2,6–difluorobenzyl ether series of cyclopentyl sulfones were found to be surprisingly more potent than the corresponding alcohol derivatives. When combined with a more optimized phenyl ((R)–3–phenylpyrrolidin–3–yl)sulfone template, the 2,6–difluorobenzyl ethers yielded a set of very potent RORγt inverse agonists (e.g., compound 26, RORγt Gal4 EC50 11 nM) that are highly selective against PXR, LXRα and LXRβ. After optimizing for stability in human and mouse liver microsomes, compounds 29 and 38 were evaluated in vivo and found to have good oral bioavailability (56% and 101%, respectively) in mice. X–ray co–crystal structure of compound 27 in RORγt revealed that the bulky benzyl ether group causes helix 11 of the protein to partially uncoil to create a new, enlarged binding site, which nicely accommodates the benzyl ether moiety, leading to net potency gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号