首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Our previous studies indicated that opioid-induced cardioprotection occurs via activation of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, other elements of the Met(5)-enkephalin (ME) cardioprotection pathway are not fully characterized. In the present study, we investigated the role of tyrosine kinase, MAPK, and phosphatidylinositol 3-kinase (PI3K) signaling in ME-induced protection. Ca(2+)-tolerant, adult rabbit cardiomyocytes were isolated by collagenase digestion and subjected to simulated ischemia for 180 min. ME was administered 15 min before the 180 min of simulated ischemia; blockers were administered 15 min before ME. Cell death was assessed by trypan blue as a function of time. The epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 (250 nM) blocked ME-induced protection, but the inactive analog AG-9 (100 microM) did not. Treatment with herbimycin (1 microM) completely eliminated ME-induced protection. To verify that ME activates EGFR and to determine the involvement of Src, Western blotting of EGFR was performed after ME administration with and without herbimycin A. ME resulted in herbimycin-sensitive robust phosphorylation of EGFR at Tyr(992) and Tyr(1068). Administration of the selective MAPK inhibitor PD-98059 (10 nM) and the specific MEK1/2 inhibitor U-0126 (10 microM) also inhibited ME-induced cardioprotection. ME-induced ERK1/2 phosphorylation was significantly reduced by PD-98059, the EGFR kinase inhibitor PD-153035 (10 microM), and chelerythrine (2 microM). The PI3K inhibitor LY-294002 (20 microM) abrogated ME-induced protection, and ME-induced Akt phosphorylation at Ser(473) was suppressed by LY-294002, PD-153035, and chelerythrine. We conclude that ME-induced cardioprotection is mediated via Src-dependent EGFR transactivation and activation of the PI3K and MAPK pathways.  相似文献   

2.
Reperfusion therapy is widely used to treat acute myocardial infarction (AMI). However, further injury to the heart induced by rapidly initiating reperfusion is often encountered in clinical practice. A lack of pharmacological strategies in clinics limits the prognosis of patients with myocardial ischemia-reperfusion injury (MIRI). Dihydromyricetin (DMY) is one of the most abundant components in vine tea, commonly known as the tender stems and leaves of Ampelopsis grossedentata. The aim of this study was to evaluate the cardioprotection of DMY against myocardial ischemia-reperfusion (I/R) injury and to further investigate the underlying mechanism. An I/R injury was induced by left anterior descending coronary artery occlusion in adult male rats in vivo and a hypoxia–reoxygenation (H/R) injury in H9c2 cardiomyocytes in vitro. We found that DMY pretreatment provided significant protection against I/R-induced injury, including enhanced antioxidant capacity and inhibited apoptosis in vivo and in vitro. This effect correlated with the activation of the PI3K/Akt and HIF-1α signaling pathways. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of DMY against I/R-induced injury. In addition, the PI3K inhibitor partially blocked the effects of DMY on the upregulation of Bcl-2, Bcl-xl, procaspase-3, -8, and -9 protein expression and the downregulation of HIF-1α, Bnip3, Bax, Cyt-c, cleaved caspase-3, -8, and -9 protein expression. Collectively, these results showed that DMY decreased the apoptosis and necrosis by I/R treatment, and PI3K/Akt and HIF-1α plays a crucial role in protection during this process. These observations indicate that DMY has the potential to exert cardioprotective effects against I/R injury and the results might be important for the clinical efficacy of AMI treatment.  相似文献   

3.
Postconditioning (POC), a novel strategy of cardioprotection against ischemia-reperfusion injury, is clinically attractive because of its therapeutic application at the predictable onset of reperfusion. POC activates several intracellular kinase signaling pathways, including phosphatidylinositol 3-kinase (PI3K)-Akt (RISK). The regulation of POC-induced survival kinase signaling, however, has not been fully characterized. JAK-STAT activation is integral to cardiac ischemic tolerance and may provide upstream regulation of RISK. We hypothesized that POC requires the activation of both JAK-STAT and RISK signaling. Langendorff-perfused mouse hearts were subjected to 30 min of global ischemia and 40 min of reperfusion, with or without POC immediately after ischemia. A separate group of POC hearts was treated with AG 490, a JAK2 inhibitor, Stattic, a specific STAT3 inhibitor, or LY-294002, a PI3K inhibitor, at the onset of reperfusion. Cardiomyocyte-specific STAT3 knockout (KO) hearts were also subjected to non-POC or POC protocols. Myocardial performance (+dP/dt(max), mmHg/s) was assessed throughout each perfusion protocol. Phosphorylated (p-) STAT3 and Akt expression was analyzed by Western immunoblotting. POC enhanced myocardial functional recovery and increased expression of p-STAT3 and p-Akt. JAK-STAT inhibition abrogated POC-induced functional protection. STAT3 inhibition decreased expression of both p-STAT3 and p-Akt. PI3K inhibition also attenuated POC-induced cardioprotection and reduced p-Akt expression but had no effect on STAT3 phosphorylation. Interestingly, STAT3 KO hearts undergoing POC exhibited improved ischemic tolerance compared with KO non-POC hearts. POC induces myocardial functional protection by activating the RISK pathway. JAK-STAT signaling, however, is insufficient for effective POC without PI3K-Akt activation.  相似文献   

4.
PI3K/Akt signaling plays an important role in the regulation of cardiomyocyte death machinery, which can cause stress-induced cardiac dysfunction. Here, we report that apoptosis regulator through modulating IAP expression (ARIA), a recently identified transmembrane protein, regulates the cardiac PI3K/Akt signaling and thus modifies the progression of doxorubicin (DOX)-induced cardiomyopathy. ARIA is highly expressed in the mouse heart relative to other tissues, and it is also expressed in isolated rat cardiomyocytes. The stable expression of ARIA in H9c2 cardiac muscle cells increased the levels of membrane-associated PTEN and subsequently reduced the PI3K/Akt signaling and the downstream phosphorylation of Bad, a proapoptotic BH3-only protein. When challenged with DOX, ARIA-expressing H9c2 cells exhibited enhanced apoptosis, which was reversed by the siRNA-mediated silencing of Bad. ARIA-deficient mice exhibited normal heart morphology and function. However, DOX-induced cardiac dysfunction was significantly ameliorated in conjunction with reduced cardiomyocyte death and cardiac fibrosis in ARIA-deficient mice. Phosphorylation of Akt and Bad was substantially enhanced in the heart of ARIA-deficient mice even after treatment with DOX. Moreover, repressing the PI3K by cardiomyocyte-specific expression of dominant-negative PI3K (p110α) abolished the cardioprotective effects of ARIA deletion. Notably, targeted activation of ARIA in cardiomyocytes but not in endothelial cells reduced the cardiac PI3K/Akt signaling and exacerbated the DOX-induced cardiac dysfunction. These studies, therefore, revealed a previously undescribed mode of manipulating cardiac PI3K/Akt signaling by ARIA, thus identifying ARIA as an attractive new target for the prevention of stress-induced myocardial dysfunction.  相似文献   

5.
We investigated the eplerenone-induced, PI3K/Akt- and GSK-3β-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intraperitoneally with eplerenone. On the 15th day, the rats were exposed to I/R injury by 20-min occlusion of the left anterior descending coronary artery followed by 30 min of reperfusion. The hearts were processed for biochemical, molecular, and histological investigations. The I/R injury in diabetic rats inflicted a significant rise in the oxidative stress and apoptosis along with a decrease in the arterial and ventricular function and the expressions of PI3K/Akt and GSK-3β proteins. Eplerenone pretreatment reduced the arterial pressure, cardiac inotropy, and lusitropy. It significantly reduced apoptosis and cardiac injury markers. The histology revealed cardioprotection in eplerenone-treated rats. Eplerenone up-regulated the PI3K/Akt and reduced the GSK-3β expression. The group receiving wortmannin with eplerenone was deprived eplerenone-induced cardioprotection. Our results reveal the eplerenone-induced cardioprotection against I/R injury in diabetic rats and substantiate the involvement of PI3K/Akt and GSK-3β pathways in its efficacy.  相似文献   

6.
Ischaemia/reperfusion (I/R) injury is a common clinical condition that results in apoptosis and oxidative stress injury. Thyroid hormone was previously reported to elicit cardiac myocyte hypertrophy and promote cardiac function after cardiac injury. We used an in vivo mouse model of I/R injury and in vitro primary cardiomyocyte culture assays to investigate the effects of thyroid hormone on cardiomyocytes during hypoxia/reoxygenation (H/R) injury. The results showed that T3 pretreatment in vivo significantly improved left ventricular function after I/R injury. In vitro, T3 pretreatment decreased cell apoptosis rate, inhibited caspase-3 activity and decreased the Bax/Bcl-2 ration induced by H/R injury. T3 pretreatment significantly attenuated the loss of mitochondrial membrane potential. Furthermore, it was observed that T3 diminished the expression of NCX1 protein and decreased SERCA2a protein expression in H/R-induced cardiomyocytes, and T3 prevented intracellular Ca2+ increase during H/R injury. Also, T3 increased the expression of IGF-1, and PI3K/Akt signalling in cardiomyocytes under H/R-induced injury, and that the protective effect of T3 against H/R-induced injury was blocked by the PI3K inhibitor LY294002. IGF-1 receptor (IGF-1R) inhibitor GSK1904529A significantly inhibited the expression of IGF-1R and PI3K/Akt signalling. In summary, T3 pretreatment protects cardiomyocytes against H/R-induced injury by activating the IGF-1-mediated PI3K/Akt signalling pathway.  相似文献   

7.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

8.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

9.
There is evidence for differences in the response to the treatment of cardiovascular disease in men and women. In addition, there are conflicting results regarding the effectiveness of pharmacologically induced protection or ischemic preconditioning in females. We investigated whether the ability of Met(5)-enkephalin (ME) to reduce cell death after oxygen-glucose deprivation (OGD) is influenced by the presence of 17beta-estradiol (E(2)) in a nitric oxide (NO)- and estrogen receptor-dependent manner. On postnatal day 7 to 8, murine cardiomyocytes from wild-type or inducible NO synthase (iNOS) knockout mice were separated by sex, isolated by collagenase digestion, cultured for 24 h, and subjected to 90 min OGD and 180 min reoxygenation at 37 degrees C (n = 4 to 5 replicates). Cell cultures were incubated in E(2) for 15 min or 24 h before OGD. ME was used to increase cell survival. Cell death was assessed by propidium iodide. More than 300 cells were examined for each treatment. Data are presented as means +/- SE. As a result, in both sexes, ME-induced cell survival was lost in the presence of E(2), and the ability of ME to improve cell survival was restored after treatment with the estrogen receptor antagonist ICI-182780. Furthermore, iNOS was necessary for ME to increase cell survival following OGD in vitro. We conclude that ME-induced reduction in cell death is abolished by E(2) in a sex-independent manner via activation of estrogen receptors, and this interaction is dependent on iNOS.  相似文献   

10.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.  相似文献   

11.
López N  Díez J  Fortuño MA 《Cytokine》2005,30(5):282-292
The aim of this study was to investigate the cytoprotective effects of CT-1 against non-ischemic death stimuli in adult cardiomyocytes. Primary cultures of cardiomyocytes isolated from adult rats were stimulated with either angiotensin II (Ang II) or H(2)O(2) in the presence or absence of CT-1. Cell death was determined by trypan blue exclusion, cell viability by MTT assay and apoptosis by TUNEL-Annexin-V staining. Intracellular pathways were analyzed by the employment of chemical inhibitors and by the assessment of signalling intermediates phosphorylation by Western blot analysis. CT-1 reduced (p<0.01) total cell death and apoptosis induced by either Ang II or H(2)O(2), and increased (p<0.01) cell viability in cardiomyocytes exposed to these stimuli. These effects of CT-1 were abolished in the presence of antibodies specific for gp130 or LIFR and did not require RNA or protein synthesis. Both Wortmannin and PD98059 abolished protective effects of CT-1 against H(2)O(2), whereas only Wortmannin inhibited protection against Ang II. In both cases, Akt kinase activation and Bad phosphorylation were observed. These findings suggest that CT-1 protects adult cardiomyocytes against Ang II- and oxidative stress-induced cell death, via gp130/LIFR and by means of the PI3K/Akt and the p42/44 MAPK intracellular cascades.  相似文献   

12.
Zhu Y  Shi YP  Wu D  Ji YJ  Wang X  Chen HL  Wu SS  Huang DJ  Jiang W 《DNA and cell biology》2011,30(10):809-819
Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge. Salidroside attenuated H2O2-impaired cell viability in a concentration-dependent manner, and effectively inhibited cellular malondialdehyde production, lethal sarcolemmal disruption, cell necrosis, and apoptosis induced by H2O2 insult. Salidroside significantly augmented Akt phosphorylation at Serine 473 in the absence or presence of H2O2 stimulation; wortmannin, a specific inhibitor of PI3K, abrogated salidroside protection. Salidroside increased the intracellular mRNA expression and activities of catalase and Mn-superoxide dismutases in a PI3K-dependent manner. Our results indicated that salidroside protected cardiomyocytes against oxidative injury through activating the PI3K/Akt pathway and increasing the expression and activities of endogenous PI3K dependent antioxidant enzymes.  相似文献   

13.
Epoxyeicosatrienoic acids (EETs) reduce infarction of the myocardium after ischemia-reperfusion injury to rodent and dog hearts mainly by opening sarcolemmal and mitochondrial potassium channels. Other mediators for the action of EET have been proposed, although no definitive pathway or mechanism has yet been reported. Using cultured cells from two rodent species, immortalized myocytes from a mouse atrial lineage (HL-1) and primary myocytes derived from neonatal rat hearts, we observed that pretreatment with EETs (1 microM of 14,15-, 11,12-, or 8,9-EET) attenuated apoptosis after exposure to hypoxia and reoxygenation (H/R). EETs also preserved the functional beating of neonatal myocytes in culture after exposure to H/R. We demonstrated that EETs increased the activity of the prosurvival enzyme phosphatidylinositol 3-kinase (PI3K). In fact, cardiomyocytes pretreated with EET and exposed to H/R exhibited antiapoptotic changes in at least five downstream effectors of PI3K, protein kinase B (Akt), Bcl-x(L)/Bcl-2-associated death promoter, caspases-9 and -3 activities, and the expression of the X-linked inhibitor of apoptosis, compared with vehicle-treated controls. The PI3K/Akt pathway is one of the strongest intracellular prosurvival signaling systems. Our studies show that EETs regulate multiple molecular effectors of this pathway. Understanding the targets of action of EET-mediated protection will promote the development of these fatty acids as therapeutic agents against cardiac ischemia-reperfusion.  相似文献   

14.
Sildenafil, a potent inhibitor of phosphodiesterase-5 (PDE-5) induces powerful protection against myocardial ischemia-reperfusion injury. PDE-5 inhibition increases cGMP levels that activate cGMP-dependent protein kinase (PKG). However, the cause and effect relationship of PKG in sildenafil-induced cardioprotection and the downstream targets of PKG remain unclear. Adult ventricular myocytes were treated with sildenafil and subjected to simulated ischemia and reoxygenation. Sildenafil treatment significantly decreased cardiomyocyte necrosis and apoptosis. The PKG inhibitors, KT5823, guanosine 3',5'-cyclic monophosphorothioate, 8-(4-chloro-phenylthio) (R(p)-8-pCPT-cGMPs), or DT-2 blocked the anti-necrotic and anti-apoptotic effect of sildenafil. Selective knockdown of PKG in cardiomyocytes with adenoviral vector containing short hairpin RNA of PKG also abolished sildenafil-induced protection. Furthermore, intra-coronary infusion of sildenafil in Langendorff-isolated mouse hearts prior to ischemia-reperfusion significantly reduced myocardial infarct size after 20 min ischemia and 30 min reperfusion, which was abrogated by KT5823. Sildenafil significantly increased PKG activity in intact hearts and cardiomyocytes. Sildenafil also enhanced the Bcl-2/Bax ratio, phosphorylation of Akt, ERK1/2, and glycogen synthase kinase 3beta. All these changes (except Akt phosphorylation) were significantly blocked by KT5823 and short hairpin RNA of PKG. These studies provide the first evidence for an essential role of PKG in sildenafil-induced cardioprotection. Moreover, our results demonstrate that sildenafil activates a PKG-dependent novel signaling cascade that involves activation of ERK and inhibition of glycogen synthase kinase 3beta leading to cytoprotection.  相似文献   

15.
Sarcolemmal connexin-43 (Cx43) and mitochondrial Cx43 play distinct roles: formation of gap junctions and production of reactive oxygen species (ROS) for redox signaling. In this study, we examined the hypothesis that Cx43 contributes to activation of a major cytoprotective signal pathway, phosphoinositide 3-kinase (PI3K)-Akt-glycogen synthase kinase-3β (GSK-3β) signaling, in cardiomyocytes. A δ-opioid receptor agonist {[d-Ala(2),d-Leu(5)]enkephalin acetate (DADLE)}, endothelin-1 (ET-1), and insulin-like growth factor-1 (IGF-1) induced phosphorylation of Akt and GSK-3β in H9c2 cardiomyocytes. Reduction of Cx43 protein to 20% of the normal level by Cx43 small interfering RNA abolished phosphorylation of Akt and GSK-3β induced by DADLE or ET-1 but not that induced by IGF-1. DADLE and IGF-1 protected H9c2 cells from necrosis after treatment with H(2)O(2) or antimycin A. The protection by DADLE or ET-1, but not that by IGF-1, was lost by reduction of Cx43 protein expression. In contrast to Akt and GSK-3β, PKC-ε, ERK and p38 mitogen-activated protein kinase were phosphorylated by ET-1 in Cx43-knocked-down cells. Like diazoxide, an activator of the mitochondrial ATP-sensitive K(+) channel, DADLE and ET-1 induced significant ROS production in mitochondria, although such an effect was not observed for IGF-1. Cx43 knockdown did not attenuate the mitochondrial ROS production by DADLE or ET-1. Cx43 was coimmunoprecipitated with the β-subunit of G protein (Gβ), and knockdown of Gβ mimicked the effect of Cx43 knockdown on ET-1-induced phosphorylation of Akt and GSK-3β. These results suggest that Cx43 contributes to activation of class I(B) PI3K in PI3K-Akt-GSK-3β signaling possibly as a cofactor of Gβ in cardiomyocytes.  相似文献   

16.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

17.
TLRs play a critical role in the induction of innate and adaptive immunity. However, TLRs have also been reported to mediate the pathophysiology of organ damage following ischemia/reperfusion (I/R) injury. We have reported that TLR4(-/-) mice show decreased myocardial injury following I/R; however, the protective mechanisms have not been elucidated. We examined the role of the PI3K/Akt signaling pathway in TLR4(-/-) cardioprotection following I/R injury. TLR4(-/-) and age-matched wild-type (WT) mice were subjected to myocardial ischemia for 45 min, followed by reperfusion for 4 h. Pharmacologic inhibitors of PI3K (wortmannin or LY294002) were administered 1 h before myocardial I/R. Myocardial infarct size/area at risk was reduced by 51.2% in TLR4(-/-) vs WT mice. Cardiac myocyte apoptosis was also increased in WT vs TLR4(-/-) mice following I/R. Pharmacologic blockade of PI3K abrogated myocardial protection in TLR4(-/-) mice following I/R. Specifically, heart infarct size/area at risk was increased by 98% in wortmannin and 101% in LY294002-treated TLR4(-/-) mice, when compared with control TLR4(-/-) mice. These data indicate that protection against myocardial I/R injury in TLR4(-/-) mice is mediated through a PI3K/Akt-dependent mechanism. The mechanisms by which PI3K/Akt are increased in the TLR4(-/-) myocardium may involve increased phosphorylation/inactivation of myocardial phosphatase and tensin homolog deleted on chromosome 10 as well as increased phosphorylation/inactivation of myocardial glycogen synthase kinase-3beta. These data implicate innate immune signaling pathways in the pathology of acute myocardial I/R injury. These data also suggest that modulation of TLR4/PI3K/Akt-dependent signaling pathways may be a viable strategy for reducing myocardial I/R injury.  相似文献   

18.
目的:明确P13K/Akt信号通路在缺血缺氧心肌细胞损害中的作用。方法:建立心肌细胞缺血缺氧模型,施加磷脂酰肌醇3激酶抑制剂LY294002干预,观察心肌细胞活力、培养液中乳酸脱氢酶(LDH)含量及碘化丙啶(PI)染色阳性细胞比例的变化。结果:模拟缺血缺氧后细胞活力下降,LDH及PI染色阳性细胞比例显著增加。LY294002干预复合缺血缺氧后,细胞活力急剧下降,LDH含量及PI染色阳性细胞比例进一步显著增加(P<0.01)。结论:应用LY294002加重了缺血缺氧对心肌细胞的损伤效应,提示PI3K/Akt通路参与了缺血缺氧心肌细胞的内源性保护反应,减轻了缺血缺氧损害。  相似文献   

19.
Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1.  相似文献   

20.
The mechanisms by which growth factors trigger signal transduction pathways leading to protection against apoptosis are of great interest. In this study, we investigated the effect of hepatocyte growth factor (HGF/SF) and epidermal growth factor (EGF) on adriamycin (ADR)-induced apoptosis. Treatment of human epithelial MKN74 cells with ADR, a DNA topoisomerase IIalpha inhibitor, caused apoptosis. However, cells pretreated with HGF/SF, but not those pretreated with EGF, were resistant to this apoptosis. The protective effect of HGF/SF against the ADR-induced apoptosis was abolished in the presence of either LY294002, an inhibitor of phosphatidylinositol-3'-OH kinase (PI3-K) or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, an inhibitor of Akt, thus implicating the activation of PI3-K-Akt signaling in the antiapoptotic action of HGF/SF. Immunoblotting analysis revealed that HGF/SF stimulated the sustained phosphorylation of Akt for several hours but that EGF stimulated the phosphorylation only transiently. Furthermore, ADR-induced activation of caspase-9, a downstream molecule of Akt, was inhibited for at least 24 h after HGF/SF stimulation, but it was not affected by EGF stimulation. Cell-surface biotin-labeling analysis showed that the HGF/SF receptor remained on the cell surface until at least 30 min after HGF/SF addition but that the EGF receptor level on the cell surface was attenuated at an earlier time after EGF addition. These results indicate that HGF/SF, but not EGF, transmitted protective signals against ADR-induced apoptosis by causing sustained activation of the PI3-K-Akt signaling pathway. Furthermore, the difference in antiapoptotic capacity between HGF/SF and EGF is explained, at least in part, by the delayed down-regulation of the HGF/SF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号