首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of the mycoparasitic fungal genus Hypocrea/Trichoderma are prominent producers of peptaibols, a class of small linear peptides of fungal origin. Some of these peptaibols have been shown to act synergistically with cell-wall-degrading enzymes in the inhibition of the growth of other fungi in vitro and in vivo. Here we present the structure of the Hypocrea atroviridis peptaibol synthetase gene (pbs1), deduced from the genome sequence of H. atroviridis. It consists of 19 typical peptide synthetase modules with the required additional modifying domains at the N and C termini. Phylogenetic and similarity analyses of the individual amino acid-activating modules is consistent with its ability to synthesize atroviridins. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of surface-grown cultures of H. atroviridis showed that no peptaibols were formed during vegetative growth, but a microheterogenous mixture of atroviridins accumulated when the colonies started to sporulate. This correlation between sporulation and atroviridin formation was shown to be independent of the pathway inducing sporulation (i.e., light, mechanical injury and carbon starvation, respectively). Atroviridin formation was dependent on the function of the two blue light regulators, BLR1 and BLR2, under some but not all conditions of sporulation and was repressed in a pkr1 (regulatory subunit of protein kinase A) antisense strain with constitutively active protein kinase A. Conversely, however, loss of function of the Galpha-protein GNA3, which is a negative regulator of sporulation and leads to a hypersporulating phenotype, fully impairs atroviridin formation. Our data show that formation of atroviridin by H. atroviridis occurs in a sporulation-associated manner but is uncoupled from it at the stage of GNA3.  相似文献   

2.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

3.
4.
Abstract Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.  相似文献   

5.
Summary Plasmodial cells of the slime moldPhysarum polycephalum become competent for sporulation following a prolonged period of starvation in darkness. Then sporulation can be induced by illumination. Microinjections of the stable (Sp)- and (Rp)-diastereoisomers of adenosine cyclic 3′,5′ monothionophosphate before and during a sensitive period from the start of illumination until 5 h after lead to a significant delay in the sporulation process. Both of the diastereoisomers of cyclic AMP prolong the time for sporangia to form in darkness. However, the (Sp)-diastereoisomer is more effective and causes morphological changes in plasmodia. The experimental data suggest that cyclic AMP is decisively involved in light-induced differentiation in the lower eukaryotoPhysarum polycephalum.  相似文献   

6.
7.
When Leptophaeria michotii was grown in conditions that permitted a stable periodicity of sporulation (asparagine 6.6 mM in darkness or asparagine 2.6 mM in continuous white light), the level of intracellular cyclic AMP was lower and the activity of the cyclic AMP phosphodiesterase higher in contrast to the cultures with an instable periodicity.With asparagine 6.6 mM and in darkness, theophylline (1 mM) increased the intracellular cyclic AMP level whereas caffeine (1 mM) had no effect. Theophylline (0.01 and 0.1 mM) or caffeine (0.01–1 mM) provoked a rhythm instability under these conditions. Isoproterenol (1 mM) increased the cyclic AMP level. Nevertheless, the instable rhythm observed in control fed with asparagine 2.6 mM in darkness, was partially stabilized with isoproterenol 0.01 M or 0.01–1 mM. Exogenous cyclic AMP (0.01–1 mM) provoked a complete regulation of the rhythm with asparagine 2.6 mM and a shortening of the stable period (from 27 to 21 h) when the fungus was grown on asparagine 6.6 mM.These results underlined the fact that Leptosphaeria rhythm regulation was not dependent on the cyclic AMP level only.  相似文献   

8.
9.
Mutants of Dictyostelium discoideum that developed huge aggregation streams in expanding clones were investigated using optical and biochemical techniques. Representatives of the six complementation groups previously identified (stmA-stmF) were found to be similar to the parental wild-type strain XP55 in both the extent and timing of their ability to initiate and relay chemotactic signals and in the formation of cyclic AMP receptors and phosphodiesterases. The mutants differed from the wild-type in producing an abnormal chemotactic (movement) response visible using both dark-field optics with synchronously aggregating amoebae on solid substrata and light scattering techniques with oxygenated cell suspensions. Mutants of complementation group stmF showed chemotactic movement responses lasting up to 520 s, rather than 100 s as seen in the parental and other strains. Measurements of cyclic GMP formed intracellularly in response to chemotactic pulses of cyclic AMP in stmF mutants showed that abnormally high concentrations of this nucleotide were formed within 10 s and were not rapidly degraded. A causal correlation between defective cyclic GMP metabolism and the altered chemotactic response is suggested, and a model is proposed that accounts for the formation of huge aggregation streams in clones of these mutants.U  相似文献   

10.
The growth and conidiation of the agedTrichoderma viride culture grown in the dark, and after an induction by a light pulse. was examined in the presence of selected mono-, di(tri)saccharides, amino acids and alcohols as sole carbon sources. Hexoses and disaccharides, but not pentoses and amino acids, promoted proportionally both growth and conidiation induced by aging or light. All compounds but pentoses promoted the conidiation in aged cultures and photoconidiation in a close correlation. Ethanol, glycerol and ethylene glycol supported both growth and conidiation but these processes were not supported equally. Conidia formation with hexoses and amino acids as sole carbon sources seems to be a function of growth promotion, rather than of growth restriction (starvation, stress, aging). With glucose as sole carbon source the conidiation was not triggered by nutrient limitation, nor by the accumulation of waste metabolites. The aging-induced conidiation can be considered to be triggered by the genetic program of the microorganism rather than by its nutrient status.  相似文献   

11.
Production of Conidia by Botrytis fabae grown in vitro   总被引:1,自引:0,他引:1  
Conidiation in Botrytis fabae was stimulated by irradiating 1 to 3 day old, but not 4 to 5 day old mycelium. Three cycles of 12 h irradiation + 12 h darkness stimulated the production of about twice as many spores compared with only 12 h irradiation. At 18°C all the spores had been produced within 3 days but not within 2 days from the start of irradiation. Near-u.v. irradiation at wavelengths of 375–400 nm induced most sporulation. Red light at 600–650 nm also stimulated conidiation but irradiation at other wavelengths from 300 to 700 nm was ineffective. Fewer conidia were produced when the fungus was kept in darkness at 4°C between periods of irradiaton at 18°C compared with continuous 18°C. The optimum osmotic potential of the culture, medium for conidiation was about-27 bar although more mycelium grew at even lower osmotic potentials. Abundant spore production occurred when the fungus was grown in media with a wide range of pH values.  相似文献   

12.
The fungal proteins of the White Collar photoreceptor family, represented by WC-1 from Neurospora crassa, mediate the control by light of different biochemical and developmental processes, such as carotenogenesis or sporulation. Carotenoid biosynthesis is induced by light in the gibberellin-producing fungus Fusarium fujikuroi. In an attempt to identify the photoreceptor for this response, we cloned the only WC-1-like gene present in the available Fusarium genomes, that we called wcoA. The predicted WcoA polypeptide is highly similar to WC-1 and contains the relevant functional domains of this protein. In contrast to the Neurospora counterpart, wcoA expression is not affected by light. Unexpectedly, targeted wcoA disruptant strains maintain the light-induced carotenogenesis. Furthermore, the wcoA mutants show a drastic reduction of fusarin production in the light, and produce less gibberellins and more bikaverins than the parental strain under nitrogen-limiting conditions. The changes in the production of the different products indicate a key regulatory role for WcoA in secondary metabolism of this fungus. Additionally, the mutants are severely affected in conidiation rates under different culture conditions, indicating a more general regulatory role for this protein.  相似文献   

13.
The fungal proteins of the White Collar photoreceptor family, represented by WC-1 from Neurospora crassa, mediate the control by light of different biochemical and developmental processes, such as carotenogenesis or sporulation. Carotenoid biosynthesis is induced by light in the gibberellin-producing fungus Fusarium fujikuroi. In an attempt to identify the photoreceptor for this response, we cloned the only WC-1-like gene present in the available Fusarium genomes, that we called wcoA. The predicted WcoA polypeptide is highly similar to WC-1 and contains the relevant functional domains of this protein. In contrast to the Neurospora counterpart, wcoA expression is not affected by light. Unexpectedly, targeted wcoA disruptant strains maintain the light-induced carotenogenesis. Furthermore, the wcoA mutants show a drastic reduction of fusarin production in the light, and produce less gibberellins and more bikaverins than the parental strain under nitrogen-limiting conditions. The changes in the production of the different products indicate a key regulatory role for WcoA in secondary metabolism of this fungus. Additionally, the mutants are severely affected in conidiation rates under different culture conditions, indicating a more general regulatory role for this protein.  相似文献   

14.
15.
Streptomyces antibioticus ETHZ 7451 formed spores in cultures grown in a liquid medium from either a spore or a mycelium inoculum. The spores formed were similar to those formed on surface-grown cultures, except for reduced heat resistance. Both types of spores were sensitive to lysozyme, which is unusual for Streptomyces spores. Glucose and other carbon sources, which promoted different growth rates, did not affect sporulation efficiency. Nitrogen sources, such as casamino acids, that allowed high growth rates suppressed the sporulation. A remarkable repression was also observed in media with some nitrogen sources that promoted noticeably lower growth rates. In permissive media, with nitrogen sources that permitted relatively high growth rates, sporulation was conditioned to the consumption of ammonium in the medium, but not to that of other nitrogen sources, such as asparagine. Phosphate did not show a repressive effect on sporulation in the assayed conditions.  相似文献   

16.
The regulation of three Salmonella typhimurium phosphatases in reponse to different nutritional limitations has been studied. Two enzymes, an acid hexose phosphatase (EC 3.1.3.2) and a cyclic phosphodiesterase (EC 3.1.4.d), appear to be regulated by the cyclic adenosine 3' ,5'-monophosphate (AMP) catabolite repression system. Levels of these enzymes increased in cells grown on poor carbon sources but not in cells grown on poor nitrogen or phosphorus sources. Mutants lacking adenyl cyclase did not produce elevated levels of these enzymes in response to carbon limitation unless cyclic AMP was supplied. Mutants lacking the cyclic AMP receptor protein did not produce elevated levels of these enzymes in response to carbon limitation regardless of the presence of cyclic AMP. Since no specific induction of either enzyme could be demonstrated, these enzymes appear to be controlled solely by the cyclic AMP system. Nonspecific acid phsphatase activity (EC 3.1.3.2) increased in response to carbon, nitrogen, phosphorus, or sulfur limitation. The extent of the increase depended on growth rate, with slower growth rates favoring greater increases, and on the type of limitation. Limitation for either carbon or phosphorus resulted in maximum increases, whereas severe limitation of Mg2+ caused only a slight increase. The increase in nonspecific acid phosphatase during carbon limitation was apparently not mediated by the catabolite repression system since mutants lacking adenyl cyclase or the cyclic AMP receptor protein still produced elevated levels of this enzyme during carbon starvation. Nor did the increase during phosphorus limitation appear to be mediated by the alkaline phosphatase regulatory system. A strain of Salmonella bearing a chromosomal mutation, which caused constitutive production of alkaline phosphatase (introduced by an episome from Escherichia coli), did not have constitutive levels of nonspecific acid phosphatase.  相似文献   

17.
In Neurospora crassa, a circadian rhythm of conidiation (asexual spore formation) can be seen on the surface of agar media. This rhythm has a period of 22 hr in constant darkness (D/D). Under constant illumination (L/L), no rhythm is visible and cultures show constant conidiation. However, here we report that strains with a mutation in the vivid (vvd) gene, previously shown to code for the photoreceptor involved in photo-adaptation, exhibit conidiation rhythms in L/L as well as in D/D. The period of the rhythm of vvd strains ranges between 6 and 21 hr in L/L, depending upon the intensity of the light, the carbon source, and the presence of other mutations. Temperature compensation of the period also depends on light intensity. Dark pulses given in L/L shift the phase of the rhythm. Shifts from L/L to D/D show unexpected after effects; i.e., the short period of a vvd strain in L/L gradually lengthens over 2–3 days in D/D. The rhythm in L/L requires the white collar (wc-1) gene, but not the frequency (frq) gene. FRQ protein shows no rhythm in L/L in a vvd strain. The conidiation rhythm in L/L in vvd is therefore driven by a FRQ-less oscillator (FLO).  相似文献   

18.
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells.  相似文献   

19.
We showed that in the yeast Schizosaccharomyces pombe, fructose-bisphosphatase is not subject to catabolite inactivation as it was observed in Saccharomyces cerevisiae. However, this enzyme activity is sensitive to catabolite repression in both yeasts. Two mutants lacking completely fructose-bisphosphatase activity were found. They were unable to grow on glycerol medium. They were still respiratory competent and exhibited the ability to derepress partially malate dehydrogenase activity. In glucose exponential phase culture, the parental strain lacks completely the fructosebisphosphatase activity due to catabolite repression. In these conditions, the growth is slowed down only in the mutants eventhough both mutants and their parental strain lack this enzyme activity. Normal sporulation and poor spore germination were observed for one mutant whereas, only in the presence of glucose, normal sporulation and normal spore germination were observed for the second mutant. Mendelian segregation of glycerol growth was found for the well germinating mutant. It is of nuclear heredity. The two mutations appeared to be closely linked.Abbreviations FBPase Fructose-1,6-bisphosphatase - fbp - genetic symbol for FBPase deficiency - glr - symbol for inability to grow on glycerol A. M. Colson is Research Associate au Fonds National de la Recherche Scientifique  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号