首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.Abbreviations CP carbamoyl phosphate - EDTA ethylenedi-amine tetraacetic acid - PEP phosphoenolpyruvate - RuBP ribulose 1,5 bisphosphate  相似文献   

2.
Experiments on short-term photosynthesis in H14CO3 - (2–5 s) using various species of different algal classes resulted in predominant 14C-labelling (>90% of total 14C-incorporation) of phosphorylated compounds. The percentage of malate and aspartate usually accounts for distinctly less than 10% of the total 14C-labelling. These findings are consistent with data from enzymatic analyses, since 97–100% of the carboxylation capacity is due to ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) in Rhodophyceae and Chlorophyceae. Phaeophyceae are generally characterized by considerable activity of phosphoenolpyruvate carboxykinase (EC 4.1.1.32): at least 10% of carboxylation is confined to this enzyme. Similar ratios are obtained when rates of photosynthesis and of light-independent CO2-fixation are compared. Activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) could not be detected in the species investigated. The results are discussed with emphasis on the pathway of photosynthetic carbon assimilation in marine algae.Abbreviations PEP-CK phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - PEP-C phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RubP-C ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) Dedicated to Professor H. Fischer, Bonn, on his 65th birthday  相似文献   

3.
R. C. Leegood  T. ap Rees 《Planta》1978,140(3):275-282
We did this work to discover the pathway of CO2 fixation into sugars in the dark during gluconeogenesis by the cotyledons of 5-day-old seedlings of Cucurbita pepo L. We paid particular attention to the possibility of a contribution from ribulosebisphosphate carboxylase. The detailed distribution of 14C after exposure of excised cotyledons to 14CO2 in the dark was determined in a series of pulse and chase experiments. After 4s in 14CO2, 89% of the 14C fixed was in malate and aspartate. In longer exposures, and in chases in 12CO2, label appeared in alanine, phosphoenolpyruvate, 3-phosphoglycerate and sugar phosphates, and accumulated in sugars. The transfer of label from C-4 acids to sugars was restricted by inhibition of phosphoenolpyruvate carboxykinase in vivo by 3-mercaptopicolinic acid. We conclude as follows. Initial fixation of CO2 in the dark is almost entirely into phosphoenolpyruvate, probably via phosphoenolpyruvate carboxylase (EC 4.1.1.31) which we showed to be present in appreciable amounts. Incorporation into sugars occurs chiefly, if not completely, as a result of randomization of the carboxyl groups of the C-4 acids and subsequent conversion of the oxaloacetate to sugars via the accepted sequence for gluconeogenesis. Ribulosebisphosphate carboxylase appears to make very little contribution to sugar synthesis from fat.  相似文献   

4.
Acclimation of photosynthetic capacity to elevated CO2 involves a decrease of the leaf Rubisco content. In the present study, it was hypothesized that nitrogen uptake and partitioning within the leaf and among different aboveground organs affects the down-regulation of Rubisco. Given the interdependence of nitrogen and cytokinin signals at the whole plant level, it is also proposed that cytokinins affect the nitrogen economy of plants under elevated CO2, and therefore the acclimatory responses. Spring wheat received varying levels of nitrogen and cytokinin in field chambers with ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2. Gas exchange, Rubisco, soluble protein and nitrogen contents were determined in the top three leaves in the canopy, together with total nitrogen contents per shoot. Growth in elevated CO2 induced decreases in photosynthetic capacity only when nitrogen supply was low. However, the leaf contents of Rubisco, soluble protein and total nitrogen on an area basis declined in elevated CO2 regardless of nitrogen supply. Total nitrogen in the shoot was no lower in elevated than ambient CO2, but the fraction of this nitrogen located in flag and penultimate leaves was lower in elevated CO2. Decreased Rubisco: chlorophyll ratios accompanied losses of leaf Rubisco with CO2 enrichment. Cytokinin applications increased nitrogen content in all leaves and nitrogen allocation to senescing leaves, but decreased Rubisco contents in flag leaves at anthesis and in all leaves 20 days later, together with the amount of Rubisco relative to soluble protein in all leaves at both growth stages. The results suggest that down regulation of Rubisco in leaves at elevated CO2 is linked with decreased allocation of nitrogen to the younger leaves and that cytokinins cause a fractional decrease of Rubisco and therefore do not alleviate acclimation to elevated CO2.  相似文献   

5.
We compared the effect of CO2 concentration ([CO2], ranging from ∼5 to ∼34 μmol l−1) at four different photon flux densities (PFD=15, 30, 80 and 150 μmol m−2 s−1) and two light/dark (L/D) cycles (16/8 and 24/0 h) on the coccolithophore Emiliania huxleyi. With increasing [CO2], a decrease in the particulate inorganic carbon to particulate organic carbon (PIC/POC) ratio was observed at all light intensities and L/D cycles tested. The individual response in cellular PIC and POC to [CO2] depended strongly on the PFD. POC production increased with rising [CO2], irrespective of the light intensity, and PIC production decreased with increasing [CO2] at a PFD of 150 μmol m−2 s−1, whereas below this light level it was unaffected by [CO2]. Cell growth rate decreased with decreasing PFD, but was largely independent of ambient [CO2]. The diurnal variation in PIC and POC content, monitored over a 38-h period (16/8 h L/D, PFD=150 μmol m−2 s−1), exceeded the difference in carbon content between cells grown at high (∼29 μmol l−1) and low (∼4 μmol l−1) [CO2]. However, consistent with the results described above, cellular POC content was higher and PIC content lower at high [CO2], compared to the values at low [CO2], and the offset was observed throughout the day. It is suggested that the observed sensitivity of POC production for ambient [CO2] may be of importance in regulating species-specific primary production and species composition.  相似文献   

6.
Experiments were carried out to evaluate the effects of 4/2 light-dark cycles (4 h of light followed by 2 h of dark) on the rooting responses of shoots cultivated in vitro of the fruit tree rootstocks GF 677 (peach × almond hybrid), Mr.S. 2/5 (Prunus cerasifera), MM 106 (apple Nothern Spy × Paradise M1) and BA 29 (Cydonia oblonga). Under this light regime rooting percentage of GF 677, Mr.S. 2/5 and MM 106 shoots reached 100 % as in the control treatment (16/8), while in BA 29 shoots, short light-dark cycles increased rooting response by about 65 %. Moreover, the shoots of all rootstocks submitted to the 4/2 cycle showed an appreciable increase in root number and length, and an earlier root emergence of about 4 – 5 d compared to the 16/8 cycle. Finally, rooting percentage of BA 29 shoots submitted to the 4/2 light regime and treated with 0.2 mg dm−3 indolebutyric acid (IBA), was equal to that reported with 0.4 mg dm−3 IBA under the 16/8 regime, indicating that the former light regime also amplified the rhizogenic effect of auxin.  相似文献   

7.
Acclimation of photosynthetic proteins to rising atmospheric CO2   总被引:9,自引:0,他引:9  
In this review we discuss how the photosynthetic apparatus, particularly Rubisco, acclimates to rising atmospheric CO2 concentrations (ca). Elevated ca alters the control exerted by different enzymes of the Calvin cycle on the overall rate of photosynthetic CO2 assimilation, so altering the requirement for different functional proteins. A decreased flux of carbon through the photorespiratory pathway will decrease requirements for these enzymes. From modeling of the response of CO2 uptake (A) to intracellular CO2 concentration (ci) it is shown that the requirement for Rubisco is decreased at elevated ca, whilst that for proteins limiting ribulose 1,5 bisphosphate regeneration may be increased. This balance may be altered by other interactions, in particular plasticity of sinks for photoassimilate and nitrogen supply; hypotheses on these interactions are presented. It is speculated that increased accumulation of carbohydrate in leaves developed at elevated ca may signal the down regulation of Rubisco. The molecular basis of this down regulation is discussed in terms of the repression of photosynthetic gene expression by the elevated carbohydrate concentrations. This molecular model is then used to predict patterns of acclimation of perennials to long term growth in elevated ca.  相似文献   

8.
Summary Mono-specific communities of the C3 sedge, Scirpus olneyi and the C4 grass, Spartina patens, were exposed to normal ambient or elevated CO2, (ca. 680 l l–1) throughout the 1987 and 1988 growing seasons in open-top field chambers located on a tidal marsh. Single stems of C3 plants grown in ambient or elevated CO2 showed an increased photosynthetic rate when tested at elevated CO2 for both seasons. This increase in photosynthetic response in the C3 species was maintained throughout the 1987 and 1988 growing season. The stimulation of photosynthesis with elevated CO2 appeared to increase as temperature increased and decreased as photosynthetic photon flux (PPF) increased. Analysis of the photosynthetic response of the C3 species during the 1988 season indicated that significant differences in light-saturated photosynthetic rate between ambient and elevated CO2 conditions continued until October. In contrast to the C3 sedge, the C4 grass showed no significant photosynthetic increase to elevated CO2 except at the beginning of the 1988 season.  相似文献   

9.
Tobacco plants (Nicotiana tabacum) were kept in CO2 free air for several days to investigate the effect of lack of electron acceptors on the photosynthetic electron transport chain. CO2 starvation resulted in a dramatic decrease in photosynthetic activity. Measurements of the electron transport activity in thylakoid membranes showed that a loss of Photosystem II activity was mainly responsible for the observed decrease in photosynthetic activity. In the absence of CO2 the plastoquinone pool and the acceptor side of Photosystem I were highly reduced in the dark as shown by far-red light effects on chlorophyll fluorescence and P700 absorption measurements. Reduction of the oxygen content of the CO2 free air retarded photoinhibitory loss of photosynthetic activity and pigment degradation. Electron flow to oxygen seemed not to be able to counteract the stress induced by severe CO2 starvation. The data are discussed in terms of a donation of reducing equivalents from mitochondria to chloroplasts and a reduction of the plastoquinone pool via the NAD(P)H-plastoquinone oxidoreductase during CO2 starvation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The regulatory properties of enzymes of the pathway of CO2 fixation are discussed in relation to changes in regulatory parameters with changing light, CO2 and temperature.Paper presented at the FESPP meeting (Strasbourg 1984)  相似文献   

11.
Summary In order to document the natural CO2 environment of the moss Hylocomium splendens, and ascertain whether or not the moss was adapted to this, and its interactions with other microenvironmental factors, two studies were carried out. Firstly, the seasonal variations of CO2 concentration, photosynthetically active radiation (PAR), tissue water content and temperature were measured in the natural microenvironment of H. splendens in a subarctic forest during the summer period (July–September). Secondly, the photosynthetic responses of the species to controlled CO2 concentrations, PAR, temperature, and hydration were measured in the laboratory. CO2 concentrations around the upper parts of the plant, when PAR was above the compensation point (30 mol m–2 s–1), were mostly between 400 and 450 ppm. They occasionally increased up to 1143 ppm for short periods. PAR flux densities below saturating light levels for photosynthesis (100 mol m–2 s–1), occurred during 65% (July), 76% (August) and 96% (September) of the hours of the summer period. The temperature optimum of photosynthesis was 20° C: this temperature coincided with PAR above the compensation point during 5%, 6% and 0% of the time in July, August and September, respectively. Optimal hydration of tissues was infrequent. Hence PAR, temperature and water limit CO2 uptake for most of the growing season. Our data suggest that the higher than normal ambient CO2 concentration in the immediate environment of the plant counteracts some of the limitations in PAR supply that it experiences in its habitat. This species already experiences concentrations of atmospheric CO2 predicted to occur over the next 50 years.  相似文献   

12.
H. Fock  K. Klug  D. T. Canvin 《Planta》1979,145(3):219-223
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS apparent photosynthesis (net CO2 uptake) - PR photorespiration (CO2 evolution in light) - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis (true CO2 uptake)  相似文献   

13.
In order to identify a high carbon-sequestering microalgal strain, the physiological effect of different concentrations of carbon sources on microalgae growth was investigated. Five indigenous strains (I-1, I-2, I-3, I-4 and I-5) and a reference strain (I-0: Coccolithus pelagicus 913/3) were subjected to CO2 concentrations of 0.03–15% and NaHCO3 of 0.05–2 g CO2 l–1. The logistic model was applied for data fitting, as well as for estimation of the maximum growth rate (μmax) and the biomass carrying capacity (Bmax). Amongst the five indigenous strains, I-3 was similar to the reference strain with regards to biomass production values. The Bmax of I-3 significantly increased from 214 to 828 mg l–1 when CO2 concentration was increased from 0.03 to 15% (r = 0.955, P = 0.012). Additionally, the Bmax of I-3 increased with increasing NaHCO3 (r = 0.885, P = 0.046) and was recorded at 153 mg l–1 (at 0.05 g CO2 l–1) and 774 mg l–1 at (2 g CO2 l–1). Relative electron transport rate (rETR) and maximum quantum yield (Fv/Fm) were also applied to assess the impact of elevated carbon sources on the microalgal cells at the physiological level. Isolate I-3 displayed the highest rETR confirming its tolerance to higher quantities of carbon. Additionally, the decline in Fv/Fm with increasing carbon was similar for strains I-3 and the reference strain. Based on partial 28s ribosomal RNA gene sequencing, strain I-3 was homologous to the ribosomal genes of Chlorella sp.  相似文献   

14.
The circadian rhythm of CO2 output in darkened leaves of Bryophyllum fedtschenkoi R. Hamet and Perrier can be inhibited by cycloheximide (10-6 mol) and 2,4-dinitrophenol (10-5 mol) applied via the transpiration stream. After having been suppressed by 10-6 M cycloheximide, the rhythm can be reinitiated with a 12-h exposure to light. Experiments using 14CO2 show that cycloheximide abolishes the rhythm by inhibiting the dark fixation of CO2. Cycloheximide inhibits malate accumulation and acidification of the leaves, but does not affect the amount of the CO2-fixing enzyme phosphoenol-pyruvate carboxylase (PEP-C, EC 4.1.1.31) which can be extracted from the leaves during the 45 h of the experiment. Cycloheximide has no direct effect on the activity of the enzyme as measured in the assay. PEP-C from desalted leaf extracts was inhibited by L-malate (Ki=0.4 mmol). The most likely explanation for the inhibitory effect of cycloheximide and dinitrophenol is that they cause changes in tonoplast properties which result in a redistribution of malate from the vacuole to the cytoplasm. An increase in malate concentration in the cytoplasm will lead to inhibition of PEP-carboxylase, and hence the suppression of the rhythm of CO2 output.Abbreviations CAM crassulacean acid metabolism - PEP-C phosphoenol-pyruvate carboxylase - MDH malate dehydrogenase - CHM cycloheximide - DNP 2,4-dinitrophenol - LD light-dark-cycle - DD continuous darkness  相似文献   

15.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

16.
为了阐明白屈菜红碱(Chelerythrine)对铜绿微囊藻(Microcystis aeruginosa)生长及光合系统的影响, 研究了白屈菜红碱胁迫下铜绿微囊藻M. aeruginosa NIES-843生长、细胞色素含量及叶绿素光诱导荧光动力学变化. 结果显示, 当白屈菜红碱浓度10 g/L时, M. aeruginosa NIES-843的生长受到显著抑制. 通过线性回归分析, 白屈菜红碱对M. aeruginosa NIES-843生长50%抑制浓度(EC50)为(30.621.32) g/L. 当白屈菜红碱浓度为160 g/L时, M. aeruginosa NIES-843单位细胞内叶绿素a (Chl. a)和类胡萝卜素含量均显著低于对照. Chl. a光诱导荧光动力学分析结果显示, 白屈菜红碱胁迫下单位反应中心吸收的光能(ABS/RC)、单位反应中心捕获的用于还原QA的能量(TR0/RC)及单位反应中心捕获的用于电子传递的能量(ET0/RC)均受到显著抑制. 光合系统Ⅱ(PSⅡ)能量分配比率参数分析结果显示, 白屈菜红碱能显著抑制光合系统反应中心电子供体侧电子传递.    相似文献   

17.
No significant differences were found between four mathematical equations describing the response of CO2 exchange rate to photosynthetic photon flux density in seven poplar clones under laboratory conditions. Choice of an optimal equation for poplar may be based on the contemplated aims. High significant differences (at p<0.001) were found among the clones.Research was supported by the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels.  相似文献   

18.
二氧化碳储存通量对森林生态系统碳收支的影响   总被引:5,自引:0,他引:5  
涡度相关系统观测高度以下的CO2储存通量对准确评价森林生态系统与大气间净CO2交换量(NEE)有着重要的影响.本研究以长白山阔叶红松林为研究对象,利用2003年的涡度相关观测数据以及CO2浓度廓线数据,分析了CO2储存通量的变化规律及其对碳收支过程的影响.结果表明:涡度相关观测高度以下的CO2储存通量具有典型的日变化特征,其最大变化量出现在大气稳定与不稳定层结转换期.利用涡度相关系统观测的单点CO2浓度变化方法与利用CO2浓度廓线方法计算的CO2储存通量差异不显著.忽略CO2储存通量,在半小时尺度上会造成对夜间和白天的NEE分别低估25%和19%,在日和年尺度上,会对NEE低估10%和25%;忽略CO2储存通量,会低估Michaelis-Menten光响应方程及Lloyd-Taylor呼吸方程的参数,并且对表观初始量子效率α和参考呼吸Rref的低估最大;忽略CO2储存通量,在半小时、日及年尺度上,均会对总光合作用(GPP)和生态系统呼吸(Re)低估约20%.  相似文献   

19.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

20.
Regulation of photosynthetic rates of submerged rooted macrophytes   总被引:1,自引:0,他引:1  
Summary Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3–3.8 mM), 10.4–14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号