首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Calcineurin and NFAT4 induce chondrogenesis   总被引:8,自引:0,他引:8  
Nuclear factor of activated T-cells (NFAT) and calcineurin are essential regulators of immune cell and mesenchymal cell differentiation. Here we show that elevated intracellular calcium induces chondrogenesis through a calcineurin/NFAT signaling axis that activates bone morphogenetic protein (BMP) expression. The calcium ionophore, ionomycin, induced chondrogenesis through activation of calcineurin. The calcineurin substrate, NFAT4, also induced chondrogenesis and chondrocyte gene expression. Significantly, the BMP antagonist, noggin, or dominant negative BMP receptors blocked the effects of elevated intracellular calcium on chondrogenesis. This suggested that calcineurin/NFAT4 activates BMP expression. Consistent with this, BMP2 gene expression was increased by ionomycin and suppressed by the calcineurin inhibitor, cyclosporine A. Furthermore, activated NFAT4 induced BMP2 gene expression. These results have important implications for the effects of NFATs during development and adaptive responses.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the gene for the retinoic acid (RA) synthesis enzyme Aldh1a2 as a principal target of BMP signaling; prochondrogenic BMPs or GDFs lead to attenuation of Aldh1a2 expression and, consequently, to reduced activation of the retinoid signaling pathway. Consistent with this, antagonism of retinoid signaling phenocopies BMP4 action, whereas RA inhibits the chondrogenic stimulatory activity of BMP4. BMP4 also down-regulates Aldh1a2 expression in organ culture and, consistent with this, Aldh1a2 is actively excluded from the developing cartilage anlagens. Collectively, these findings provide novel insights into BMP action and demonstrate that BMP signaling governs the fate of prechondrogenic mesenchyme, at least in part, through regulation of retinoid signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号