首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

3.
Summary A nonselective cation channel activated by patch excision was characterized in inside-out patches from spiny lobster olfactory receptor neurons. The channel, which was permeable to Na+, K+ and Cs+, had a conductance of 320 pS and was weakly voltage dependent in the presence of micromolar divalent cations. Millimolar internal divalent cations caused a voltage-and concentration-dependent block of Na+ permeation. Analysis of the voltage dependence indicated that the proportion of the membrane's electric field sensed by Mg2+ was >1, suggesting that the channel contains a multi-ion pore. Internal divalent cations also reduced the frequency of channel opening in a concentration-dependent, but not voltage-dependent, manner, indicating that different cation binding sites affect gating and conductance. While block of gating prevented determining if internal divalent cations permeate the channel, a channel highly permeable to external divalent cations was observed upon patch excision to the inside-out configuration. The monovalent and divalent cation conductances shared activation by patch excision, weak voltage dependence, and steady-state activity, suggesting that they are the same channel. These data extend our understanding of this type of channel by demonstrating permeation by monovalent cations, detailing Mg2+ block of Na permeation, and demonstrating the channel's presence in arthropods.  相似文献   

4.
5.
Summary The properties of transporters (or channels) for monovalent cations in the membrane of isolated pancreatic zymogen granules were characterized with an assay measuring bulk cation influx driven by a proton diffusion potential. The proton diffusion potential was generated by suspending granules in an isotonic monovalent cation/acetate solution and increasing the proton conductance of the membrane with a protonophore. Monovalent cation conductance had the sequence Rb+ > K+ > Na+ > Cs+ > Li+ > N-methyl glucamine+. The conductance could be inhibited by Ca2+, Mg2+, Ba2+, and pharmacological agents such as quinine, quinidine, glyburide and tolbutamide, but not by 5 mm tetra-ethyl ammonium or 5mm 4-aminopyridine, when applied to the cytosolic surface of the granule membrane. Over 50% of K+ conductance could be inhibited by millimolar concentrations of ATP or MgATP. The inhibition by MgATP, but not by ATP itself, was reversed by the K+ channel opener diazoxide. The inhibitory effect is probably by a noncovalent interaction since it could be mimicked by nonhydrolyzable analogs of ATP and by ADP. The reversal of MgATP inhibition by diazoxide may be mediated by phosphorylation since it was not affected by dilution, and was blocked by the protein kinase inhibitor H7. The properties of the K+ conductance of pancreatic zymogen granule membranes are similar to those of ATP-sensitive K+ channels found in the plasma membrane of insulin-secreting islet cells, neurons, muscle, and renal cells.This research was supported by grants from the Cystic Fibrosis Foundation (ZO298) and NIH (DK-39658). F.T. is recipient of a Fellowship from the American Cystic Fibrosis Foundation. K.C.V. is a participant of a summer research program for undergraduate students from Knox College, Galesburg, IL.  相似文献   

6.
Summary Divalent cation association to sonicated phospholipid liposomes has been examined with electron paramagnetic spectroscopy. Spectra were obtained suggesting that, in some cases, divalent cations associated with acidic phospholipid head groups are highly mobile.Using the amplitude of its characteristic sextet signal as a measure of free Mn(H2O) 6 ++ , the apparent affinities of cardiolipin and phosphatidylserine for Mn2+ were measured as a function of monovalent electrolyte. Monovalent cations having smaller nonhydrated radii were more effective in displacing Mn from the phospholipids. Under conditions of low divalent cation concentrations, it is shown that the Gouy-Chapman diffuse double layer theory predicts a Mn-affinity (K A ) inversely proportional to the square of monovalent salt concentration. Although this relationship was closely obeyed for Mn binding to cardiolipin, the fall-off inK A with added sodium chloride was slower in the cases of Mn binding to phosphatidylserine or phosphatidic acid.When phosphatidylcholine or cholesterol was incorporated into mixed vesicles along with a fixed amount of charged phospholipid, the Mn-binding strength was roughly proportional to the weight fraction of the latter. This result is consistent with: (1) a random dispersal of lipids in the bilayer, and (2) a 1:2 divalent cation-phospholipid interaction.  相似文献   

7.
Abstract

Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occured and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occured and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

8.
《Biophysical journal》2020,118(4):909-921
In the era of opioid abuse epidemics, there is an increased demand for understanding how opioid receptors can be allosterically modulated to guide the development of more effective and safer opioid therapies. Among the modulators of the μ-opioid (MOP) receptor, which is the pharmacological target for the majority of clinically used opioid drugs, are monovalent and divalent cations. Specifically, the monovalent sodium cation (Na+) has been known for decades to affect MOP receptor signaling by reducing agonist binding, whereas the divalent magnesium cation (Mg2+) has been shown to have the opposite effect, notwithstanding the presence of sodium chloride. Although ultra-high-resolution opioid receptor crystal structures have revealed a specific Na+ binding site and molecular dynamics (MD) simulation studies have supported the idea that this monovalent ion reduces agonist binding by stabilizing the receptor inactive state, the putative binding site of Mg2+ on the MOP receptor, as well as the molecular determinants responsible for its positive allosteric modulation of the receptor, are unknown. In this work, we carried out tens of microseconds of all-atom MD simulations to investigate the simultaneous binding of Mg2+ and Na+ cations to inactive and active crystal structures of the MOP receptor embedded in an explicit lipid-water environment and confirmed adequate sampling of Mg2+ ion binding with a grand canonical Monte Carlo MD method. Analyses of these simulations shed light on 1) the preferred binding sites of Mg2+ on the MOP receptor, 2) details of the competition between Mg2+ and Na+ cations for specific sites, 3) estimates of binding affinities, and 4) testable hypotheses of the molecular mechanism underlying the positive allosteric modulation of the MOP receptor by the Mg2+ cation.  相似文献   

9.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.  相似文献   

10.
Summary Cellulose acetate-nitrate filters were saturated with hydrophobic solvent and interposed between various aqueous solutions. The membranes thus formed are cation permselective. The discrimination between a monovalent cation such as K+ and the alkaline earth group divalent cations is very sharp. The discrimination ratio is at least a few thousand times in favor of the monovalent cation. A major part of this discrimination is caused by the very low mobility of the divalent cation within the membrane compared with that of the monovalent cation. The remainder of the discrimination is caused by the selectivity of the membranes which prefer monovalent to divalent cations. There is a clear discrepancy between Ba++ diffusibility and mobility within, the membrane. This implies that Ba++ may move within the hydrophobic membrane as a neutral complex. Some similarity with natural biological membranes is indicated.  相似文献   

11.
Several observations have already suggested that the carboxyl groups are involved in the association of divalent cations with bacteriorhodopsin (Chang et al., 1985). Here we show that at least part of the protons released from deionized purple membrane (`blue membrane') samples when salt is added are from carboxyl groups. We find that the apparent pK of magnesium binding to purple membrane in the presence of 0.5 mM buffer is 5.85. We suggest this is the pK of the carboxyl groups shifted from their usual pK because of the proton concentrating effect of the large negative surface potential of the purple membrane. Divalent cations may interact with negatively charged sites on the surface of purple membrane through the surface potential and/or through binding either by individual ligands or by conformation-dependent chelation. We find that divalent cations can be released from purple membrane by raising the temperature. Moreover, purple membrane binds only about half as many divalent cations after bleaching. Neither of these operations is expected to decrease the surface potential and thus these experiments suggest that some specific conformation in purple membrane is essential for the binding of a substantial fraction of the divalent cations. Divalent cations in purple membrane can be replaced by monovalent, (Na+ and K+), or trivalent, (La+++) cations. Flash photolysis measurements show that the amplitude of the photointermediate, O, is affected by the replacement of the divalent cations by other ions, especially by La+++. The kinetics of the M photointermediate and light-induced H+ uptake are not affected by Na+ and K+, but they are drastically lengthened by La+++ substitution, especially at alkaline pHs. We suggest that the surface charge density and thus the surface potential is controlled by divalent cation binding. Removal of the cations (to make deionized blue membrane) or replacement of them (e.g. La+++-purple membrane) changes the surface potential and hence the proton concentration near the membrane surface. An increase in local proton concentration could cause the protonation of critical carboxyl groups, for example the counter-ion to the protonated Schiff's base, causing the red shift associated with the formation of both deionized and acid blue membrane. Similar explanations based on regulation of the surface proton concentration can explain many other effects associated with the association of different cations with bacteriorhodopsin.  相似文献   

12.
Summary The loop diuretic bumetanide binds specifically to the Na/K/2Cl cotransporter of many cell types including duck erythrocytes. Membranes isolated from these erythrocytes retain the ability to bind bumetanide when cells are exposed to cotransport activity stimuli prior to membrane isolation. An extensive study of the effects of ions on specific [3H]bumetanide binding to such membranes is presented here and compared to the activity of these ions in supporting transport function in intact cells. Both Na+ and K+ enhanced bumetanide binding in a saturable manner consistent with a single-site interaction. The K m for each ion was dependent on the concentration of the other cation suggesting heterotropic cooperative interactions between the Na+ and K+ binding sites. Na+ and K+ were partially replaceable, with the selectivity of the Na+ site being Na+ > Li+ > NH 4 + ; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ also supported a small amount of specific binding when substituted for Na+. The selectivity of the K+ site was K+ Rb+ > NH 4 + > Cs+; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ were inactive at this site. The results of transport experiments revealed a slightly different pattern. Li+ could partially substitute for Na+ in supporting coteansport, but other monovalent cations were completely inactive. The order of potency at the K+ site was NH 4 + > K+ Rb+ > Cs+ other monovalent cations. The effect of Cl- on bumetanide binding was biphasic, being stimulatory at low [Cl-] but inhibitory at high [Cl-]. As this implies the existence of two Cl- binding sites (termed Cl H and Cl L for the high- and low- affinity sites, respectively) each phase was examined individually. Cl- binding to Cl H could be described by a rectangular hyperbola with a K m of 2.5 mm, while kinetic analysis of the inhibition of bumetanide binding at high [Cl-] revealed that it was of a noncompetitive type (K i = 112.9 mm). The selectivity of anion binding to the two sites was distinct. Cl H was highly selective with Cl- > SCN- > Br-; F-, NO 3 - , ClO 4 - , MeSO 4 - , gluconate- and SO 4 2- were inactive. The efficacy of anion inhibition of binding to Cl L was ClO 4 - > I- > SCN- > NO3 > Cl-; F-, MeSO 4 - , gluconate-, and SO 4 2- were inactive. Thus, Cl H is much more selective than Cl L and largely accounts for the specificity of the system with respect to anion transport. SO 4 - , NO 3 - , I-, SCN- and ClO 4 - did not support cotransport when bound to Cl L and the latter three anions were inhibitory. Mg2+ was found to stimulate binding at a narrowly defined peak around 1.5 mm, but was inhibitory at higher concentrations. Other divalent cations caused a similar inhibition of bumetanide binding but did not exert a stimulatory effect at 1.5 mm. Divalent cations have little effect on cotransport in intact cells at concentrations up to 20 mm, suggesting that their effects on diuretic binding reflect interactions at internally disposed sites. Bumetanide binding was optimal at a pH of 7.8–8.1 and declined sharply as the pH was lowered towards 6. The titration curve correlated well with the effect of pH on cotransport in intact cells; the inhibitory effect of low pH suggests that protonation of the cotransporter may inhibit its function.We thank Drs. Brad Pewitt, John Westley and Mrinalini Rao for discussion, Sara Leung and Artelia Watson for their excellent technical assistance, and Dr. R.J. Turner for his gift of [3H] bumetanide. This work was supported in part by Cystic Fibrosis Center grant #CF RO11 7-04.  相似文献   

13.
Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the divalent Sr2+ (and Ba2+) cations. 1,3-Alternate calix[4]arene tetraguanosine hardly shows any improvement in the extraction percentages compared to its reference compound 1,3-alternate calix[4]arene tetraamide. This indicates that one G-quartet does not provide efficient cation complexation under these conditions. In the case of the lipophilic isoguanosine derivative there is a cation size dependent affinity for the monovalent cations (Cs+ ? Rb+ ? K+), but not for the divalent cations (Ca2+ > Ba2+ > Sr2+ > Mg2+). In competition experiments the isoguanosine derivative, unlike guanosine, does not discriminate between monovalent and divalent cations, giving an almost equal extraction of Cs+ and Ba2+.  相似文献   

14.
Summary The perturbational effects of monovalent and divalent cations on human erythrocyte membranes were analyzed by examining their influence on kinetic and structural characteristics of trinitrobenzenesulfonic acid (TNBS) incorporation into the amino groups of protein and phospholipid structural components. The stimulatory effects of monovalent cations on TNBS incorporation, which were size-independent and attributed to nonspecific membrane alterations resulting from ionic strength factors, contrasted with the more pronounced stimulatory properties of divalent cations which were markedly size-dependent. These stimulatory effects of cations on TNBS incorporation were associated with alterations not only in rate but also in activation energy of incorporation. Changes in activation energy produced by divalent cations paralleled their ability to perturb membrane protein components and probably reflected changes in probe permeation. The rate of TNBS incorporation exhibited a dependence on divalent cation ionic radius which paralleled ion-induced perturbations in the labelling of the membrane amino phospholipid phosphatidylethanolamine. Divalent cations differed both in the relative extent and in the characteristics of protein and phospholipid perturbation. Alkaline earth cations behaved as a rather homogeneous group while Ni++, Co++ and Mn++ constituted a second heterogeneous group. The influence of monovalent and divalent cations on the hemolytic behavior of intact erythrocytes paralleled their effects on TNBS incorporation into isolated membranes rather closely. It is suggested that TNBS incorporation may provide a valuable means of analyzing functionally relevant cation-induced alterations in biological membranes in general.  相似文献   

15.
Abstract

The present investigation attempted to differentiate haloperidol-sensitive sigma sites (σH) from phencyclidine (PCP) binding sites in rat brain membranes. We studied the effects of several cations at physiologically relevant concentrations on the binding of radioligands selective for σH sites ([3H]haloperidol, [3H](+)3-PPP**), and [3H](+)SKF10,047), or for PCP sites ([3H]PCP and [3H]TCP). The PCP sites displayed a markedly greater sensitivity to cations than σH sites. This property was reflected by a greater extent of inhibition of the binding of PCP-selective relative to σH-selective ligands at a given cation concentration, as well as by lower IC50's and by steeper slopes of the cation dose-response curves. Divalent cations were approximately 100 times more potent than monovalent cations. All cations were inhibitory, except Sr2+ and Ba2+ which, at micromolar concentrations, enhanced PCP binding but not σsH binding. Thus, PCP-selective sites appeared to be distinct from σH sites with regards to several aspects of cation modulation. This is consistent with the view that PCP and σH sites are distinct molecular entities. Further, the marked cation sensitivity of the PCP site is consistent with the current hypothesis according to which the PCP site is linked to the N-methyl-D-aspartate (NMDA) receptor-cation channel complex.  相似文献   

16.
Summary The tonoplast of cells ofChara australis was removed by replacement of the cell sap with a medium containing 5 mM EGTA (ethyleneglycol-bis-(-aminoethyl ether) N, N-tetraacetic acid). Such cells without tonoplast could generate an action potential of rectangular shape. In the present paper characteristics of the action potential were studied under various external ionic conditions.Action potentials could be elicited without refractory period and the peak of the action potential was constant among action potentials.Duration of the action potential decreased under repeated excitations, but recovered after pause. Increase in concentrations of alkali metal cations, Li+, Na+, K+, Rb+ and Cs+, resulted in prolongation of the action potential.At proper concentrations of monovalent cations the membrane potential could stay either at the resting level or at the depolarized level and could be shifted reversibly from the former level to the latter one orvice versa by applying outward or inward current. Further increase in concentrations of monovalent cations resulted in arrest of the membrane potential at the depolirized level. The critical concentrations of the monovalent cations to hold the membrane potential at the depolarized level were about 10 mM irrespective of the cation species.Divalent cations, Ca2+, Mg2+, Sr2+, Ni2+ and Mn2+, added to the bathing medium suppressed the effect of monovalent cations to prolong the action potential.Ca2+ and Mg2+ added to the bathing medium caused repolarization of the plasmalemma which had been depolarized by application of high concentrations of K+ to the bathing medium. The antagonism between monovalent and divalent cations on the state of the plasmalemma ofChara cells was discussed based on the two stable states hypothesis proposed by Tasaki (Tasaki, I. 1968. Nerve Excitation. Charles C. Thomas, Springfield, Illinois).  相似文献   

17.
Summary This mini review is primarily concerned with the monovalent and divalent cation activation of pyruvate kinase. All preparations of pyruvate kinase from vertebrate tissue which have been examined require monovalent cations such as K+ for catalysis. However, several microbial preparations are not activated by monovalent cations. In fact,E. coli synthesizes depending on growth conditions, 2 different forms of the enzyme; one form is not activated while the other is activated by monovalent cations. The monovalent cation was shown by NMR techniques to bind within 4–8 ? of the divalent cation activat or and apparently plays a direct role in the catalytic process. As with all kinases, pyruvate kinase requires a divalent cation for catalysis. Mg+2 is optimal for the physiological reaction, however, Co+2, Mn+2, and Ni+2 also activate. The divalent cation activation of several non-physiological reactions catalyzed by pyruvate kinase are reviewed. Several lines of evidence suggest that 2 moles of the divalent cation are required in the catalytic event. However, the specific role of both atoms in the catalytic event have not been thoroughly elucidated.  相似文献   

18.
Summary Outward rectifying. cation channels were observed in the epithelial cells of the urinary bladder of the toad.Bufo marinus. As studied in isolated cells using the patch-clamp technique, the channel has an average conductance of 24 and 157 pS for pipette potentials between 0 and +60 mV and –60 to –100 mV, respectively, when the major cation in both bath and pipette solutions is K+. The conductance of the cannel decreasen with increasing dehydration energy of the permeant monovalent cation in the oder Rb+=K+>Na+>Li+. Reversal potentials near zero under biionic conditions imply that the permeabilities for all four of these cations are smiliar. The channel is sensitive to quinidine sulfate but not to amiloride. It shares several pharmacological and biophysical properties with an outwardly-rectifying, vasopressin-sensitive pical K+ conductive pathway described previously for the toad urinary bladder. We demonstrate, in both single-channel and whole-bladder studies, that the outward rectification is a consequence of interaction of the chanel with extracellular divalent cations, particularly Ca2+, which blocks inward but not outward current. Various divalent cations impart different degrees of outward rectification to the conductive pathway. Concentrations of Mg2+ and Ca2+ required for halfmaximal effect are 3×10–4 and 10–4 m, resopectively. For Co2+ the values are 10–6 m at +50 mV and a 10–4 m at +200 mV. The mechanism of blockade by divalent cations is not established, but does not seem to involve a voltage-dependent interaction in which the blocker penetrates the transmembrane electric field. In the absence of divalent cations in the mucosal solution, the magnitudes of inward current carried by Rb+, K+, Na+ and Li+ through the apical K+ pathway at any transepithelial voltage, are in the same order as in the single-channel studies. We propose that the cation channel observed by us in isolated epithelial cells is the single-channel correlate of the vasopressin-sensitive apical K+ conductive pathway in the toad urinary bladder and is also related to the oxytocin- and divalent cation-sensitive apical condictivity observed in frog skin and urinary bladder.  相似文献   

19.
Summary The frog tongue was incubated in 1-anilinonaphthalene-8-sulfonate (ANS) solution and the responses of the glossopharyngeal nerve to various chemical stimuli were measured after the ANS solution was washed out. The responses to galactose, quinine and distilled water were unchanged by the ANS treatment. On the other hand, the responses to the salts, except for CaCl2, were enhanced in greater or lesser degree after the ANS treatment. The order of relative magnitude of the enhanced response to 100mm salts of monovalent cations was Na+>NH 4 + >K+>Li+, while that before the treatment was NH 4 + >K+>Na+>Li+. The enhancement of the salt responses was also observed after the tongue was treated with 6-p-toluidinonaphthalene-2-sulfonate or 1,2-cyclohexanediaminetetraacetic acid solution.The enhanced responses to the salts were suppressed to the original level before the ANS treatment by addition of CaCl2 or SrCl2. The suppression curve satisfied the Langmuir adsorption isotherm when the suppression was postulated to be responsible for the binding of Ca2+ or Sr2+ to the receptor membrane treated with ANS. The apparent binding constants for Ca2+ and Sr2+ in the presence of 100mm NaCl were obtained to be 1.2×104 m –1 and 6.7×103 m –1, respectively.The ANS treatment modified the temperature dependence of the salt responses. For example, 100mm KCl solution of low temperature induced a large response after the ANS treatment, while that of 20°C induced only small response.It was concluded that the removal of Ca2+ from the gustatory receptor membrane in the frog, which was brought about by the ANS treatment, led to the enhancement of the salt responses. The mechanism on the enhancement of the salt response by the Ca2+ removal was discussed.  相似文献   

20.
Ca2+ binding to fragmented sarcolemma isolated from canine heart was measured by an ultracentrifugation technique. Two classes of binding site with dissociation constants of 2.0 · 10?5 and 1.2 · 10?3 M were identified. The capacities of the high- and low-affinity sites were 15 and 452 nmol/mg, respectively. These sites were not affected by treatment with neuraminidase. The effects of various cations and drugs on Ca2+ binding were studied. All cations tested inhibited Ca2+ binding with the following order of potency: trivalent > divalent > monovalent cations. The order of potency for the monovalent ions was: Na+ > K+ > Li+ ? Cs+ and for the divalent and trivalent ions: La3+ ? Mn2+ > Sr2+ ? Ba2+ > Mg2+. 1 · 10?3 M caffeine and 1 · 10?8 M ouabain increased the capacity of the low-affinity sites to 1531 and 837 nmol/mg, respectively. 1 · 10?7 M verapamil, acidosis (pH 6.4), 1?10?5 M Mn2+ and 1 · 10?4 M ouabain depressed the capacity of the low-affinity sites to a range of 154–291 nmol/mg. The dissociation constants of the high- and low-affinity sites and the capacity of the high-affinity sites were not affected by these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号