首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-directed RNA polymerase from Escherichia coli can break down RNA by catalysing the reverse of the reaction: NTP + (RNA)n = (RNA)n+1 + PPi where n indicates the number of nucleotide residues in the RNA molecule, to yield nucleoside triphosphates. This reaction requires the ternary complex of the polymerase with template DNA and the RNA that it has synthesized. It is now shown that methylenebis(arsonic acid) [CH2(AsO3H2)2], arsonomethylphosphonic acid (H2O3As-CH2-PO3H2) and arsonoacetic acid (H2O3As-CH2-CO2H) can replace pyrophosphate in this reaction. When they do so, the low-Mr products of the reaction prove to be nucleoside 5'-phosphates, so that the arsenical compounds endow the polymerase with an artificial exonuclease activity, an effect previously found by Rozovskaya, Chenchik, Tarusova, Bibilashvili & Khomutov [(1981) Mol. Biol. (Moscow) 15, 636-652] for phosphonoacetic acid (H2O3P-CH2-CO2H). This is explained by instability of the analogues of nucleoside triphosphates believed to be the initial products. Specificity of recognition of pyrophosphate is discussed in terms of the sites, beta and gamma, for the -PO3H2 groups of pyrophosphate that will yield P-beta and P-gamma of the nascent nucleoside triphosphate. Site gamma can accept -AsO3H2 in place of -PO3H2, but less well; site beta can accept both, and also -CO2H. We suggest that partial transfer of an Mg2+ ion from the attacking pyrophosphate to the phosphate of the internucleotide bond of the RNA may increase the nucleophilic reactivity of the pyrophosphate and the electrophilicity of the diester, so that the reaction is assisted.  相似文献   

2.
Interaction of alpha-D-mannopyranosyl phosphate with diphenyl phosphochloridate gave the trisubstituted pyrophosphate which was converted through the reaction with nucleoside 5'-phosphates into nucleoside 5'-(alpha-D-mannopyranosyl)pyrophosphates. The method was used for preparation of guanosine diphosphate mannose analogs derived from adenine, purine, 2-aminopurine, 2-amino-6-methoxypurine, 2-amino-6-chloropurine, and 2-amino-6-mercaptopurine. These analogs are necessary for study on substrate specificity of mannosyltransferases of Salmonella O-specific polysaccharides biosynthesis.  相似文献   

3.
We measured the concentration of nucleoside triphosphates and inorganic pyrophosphate in Escherichia coli in conditions where nucleotide synthesis or nucleic acid synthesis was inhibited. The inhibitors that brought about an accumulation of some of the four ribonucleoside triphosphates also increased the pyrophosphate level. In a pyrimidine auxotrophic strain uracil starvation led to simultaneous accumulation of ATP and pyrophosphate, and they both rapidly returned to normal level when starvation was relieved. These results indicate the possible involvement of pyrophosphate in the reactions leading to the accumulation of nucleoside triphosphates.  相似文献   

4.
E. coli RNA polymerase is shown to be capable of catalyzing consecutive DNA-dependent pyrophosphorolysis of RNA in the presence of inorganic pyrophosphate and Mg2+. Active ternary complex of the enzyme with DNA and nascent RNA is needed for the reaction, the mixure of all the components can not carry out pyrophosphorolysis. The reaction was realized in the absence of added nucleoside triphosphates. Nucleoside triphosphates are low molecular mass products of the reaction. The rate of pyrophosphorolysis of the RNA synthesised for the AI promoter of the DNA of wild type T7 phage and delta D III T7 mutant phage was followed as a function of primary structure of the DNA, temperature, ionic strength and inorganic pyrophosphate concentration. The relative rate pyrophosphorolysis for particular nucleotides in different regions of the RNA can differ by several orders of magnitude depending on the primary structure of the RNA that undergoes pyrophosphorolysis. Ternary complex containing partially pyrophosphorilised RNA is active on the RNA synthesis when pyrophosphate is removed and nucleoside triphosphates are added to the reaction mixture. RNA as short as 70-8 nucleotides long can be produced at the conditions used. It seems that efficient dissociation in this region of RNA limits the pyrophosphorolysis to proceed up to the 5' end of RNA. Ternary complex of RNA polymerase with nascent RNA and DNA is shown to undergo site specific dissociation. The specificity of the dissociation is shown to be a function of the primary structure of RNA and the direction of the reaction. Dissociation occurs at different places along RNA sequence when the RNA is synthesised and when it is pyrophosphorilised.  相似文献   

5.
Thiamine pyrophosphokinase transfers a pyrophosphate group from a nucleoside triphosphate, such as ATP, to the hydroxyl group of thiamine to produce thiamine pyrophosphate. Deficiencies in thiamine can result in the development of the neurological disorder Wernicke-Korsakoff Syndrome as well as the potentially fatal cardiovascular disease wet beriberi. Pyrithiamine is an inhibitor of thiamine metabolism that induces neurological symptoms similar to that of Wernicke-Korsakoff Syndrome in animals. However, the mechanism by which pyrithiamine interferes with cellular thiamine phosphoester homeostasis is not entirely clear. We used kinetic assays coupled with mass spectrometry of the reaction products and x-ray crystallography of an equilibrium reaction mixture of thiamine pyrophosphokinase, pyrithiamine, and Mg2+/ATP to elucidate the mechanism by which pyrithiamine inhibits the enzymatic production of thiamine pyrophosphate. Three lines of evidence support the ability of thiamine pyrophosphokinase to form pyrithiamine pyrophosphate. First, a coupled enzyme assay clearly demonstrated the ability of thiamine pyrophosphokinase to produce AMP when pyrithiamine was used as substrate. Second, an analysis of the reaction mixture by mass spectrometry directly identified pyrithiamine pyrophosphate in the reaction mixture. Last, the structure of thiamine pyrophosphokinase crystallized from an equilibrium substrate/product mixture shows clear electron density for pyrithiamine pyrophosphate bound in the enzyme active site. This structure also provides the first clear picture of the binding pocket for the nucleoside triphosphate and permits the first detailed understanding of the catalytic requirements for catalysis in this enzyme.  相似文献   

6.
Inorganic pyrophosphate and triphosphate inhibit adenylate deaminase from rat skeletal muscle with K1 values of 10 and 1.5 microM, respectively, in the presence of 150 mM KCl at pH 7. They act by reducing the apparent affinity of the enzyme for AMP, with relatively small effects on Vmax. The inhibitions are diminished by H+, the KI values increasing two- to threefold in going from pH 7.0 to 6.2, and are relieved by ADP. These properties are similar to the inhibitions produced by GTP and ATP, indicating that pyrophosphate and triphosphate act like analogues of the nucleoside triphosphates. Neither of these inhibitors shows relief of inhibition at high concentrations as do ATP and GTP. These results suggest that nucleotides interact with the inhibitor site of the enzyme primarily through their phosphate moieties and with the activator site primarily through their nucleoside moieties. As the concentration of KCl is increased from 25 to 300 mM, the apparent affinities of the enzyme for ATP, GTP, orthophosphate, pyrophosphate, and triphosphate are decreased 8-100-fold. The cooperativity of the inhibitions is increased with the Hill coefficient rising from 1.0 to 1.3-1.8, and the maximum inhibition approaches 100%. Maximum activation by ADP is reduced from 1800% at 25 mM KCl to 80% at 200 mM KCl. Experiments with (CH3)4NCl indicate that activation of the enzyme by KCl involves both specific K+ effects and ionic strength effects.  相似文献   

7.
A J Lloyd  H U Thomann  M Ibba    D Sll 《Nucleic acids research》1995,23(15):2886-2892
We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS.  相似文献   

8.
P-glycoprotein (Pgp), the ATP-binding cassette multidrug transporter, exhibits a drug (substrate)-stimulatable ATPase activity, and vanadate (Vi) inhibits this activity by stably trapping the nucleoside diphosphate in the Pgp.ADP.Vi conformation. We recently demonstrated that Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp in the absence of substrate occurs both in the presence of 8-azido-[alpha-(32)P]ATP (following 8-azido-ATP hydrolysis) or 8-azido-[alpha-(32)P]ADP (without hydrolysis) and, the transition state intermediates generated under either condition are functionally indistinguishable. In this study, we compare the effect of substrates on Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp under both non-hydrolysis and hydrolysis conditions. We demonstrate that whereas substrates stimulate the Vi-induced trapping of 8-azido-[alpha-(32)P]ADP under hydrolysis conditions, they strongly inhibit Vi-induced trapping under non-hydrolysis conditions. This inhibition is concentration-dependent, follows first order kinetics, and is effected by drastically decreasing the affinity of nucleoside diphosphate for Pgp during trapping. However, substrates do not affect the binding of nucleoside diphosphate in the absence of Vi, indicating that the substrate-induced conformation exerts its effect at a step distinct from nucleoside diphosphate-binding. Our results demonstrate that during the catalytic cycle of Pgp, although the transition state, Pgp x ADP x P(i) (Vi), can be generated both via the hydrolysis of ATP or by directly providing ADP to the system, in the presence of substrate the reaction is driven in the forward direction, i.e. hydrolysis of ATP. These data suggest that substrate-stimulated ATP hydrolysis by Pgp is a vectorial process.  相似文献   

9.
Four novel 5' mRNA cap analogs have been synthesized with one of the pyrophosphate bridge oxygen atoms of the triphosphate linkage replaced with a methylene group. The analogs were prepared via reaction of nucleoside phosphor/phosphon-1-imidazolidates with nucleoside phosphate/phosphonate in the presence of ZnCl2. Three of the new cap analogs are completely resistant to degradation by human DcpS, the enzyme responsible for hydrolysis of free cap resulting from 3' to 5' cellular mRNA decay. One of the new analogs has very high affinity for binding to human DcpS. Two of these analogs are Anti Reverse Cap Analogs which ensures that they are incorporated into mRNA chains exclusively in the correct orientation. These new cap analogs should be useful in a variety of biochemical studies, in the analysis of the cellular function of decapping enzymes, and as a basis for further development of modified cap analogs as potential anti-cancer and anti-parasite drugs.  相似文献   

10.
A modified oligodeoxyribonucleotide duplex containing an unnatural internucleotide trisubstituted 3' to 5' pyrophosphate bond in one strand [5'(oligo1)3'-P(OCH3)P-5'(oligo2) 3'] reacts with nucleophiles in aqueous media by acting as a phosphorylating affinity reagent. When interacted with a protein, a portion of the oligonucleotide [--P-5'(oligo2)3'] becomes attached to an amino acid nucleophilic group through a phosphate of the O-methyl-modified pyrophosphate linkage. We demonstrate the affinity labeling of nucleophilic groups at the active sites of the EcoRI and RsrI restriction and modification enzymes with an oligodeoxyribonucleotide duplex containing a modified scissile bond in the EcoRI recognition site. With the EcoRI and RsrI endonucleases in molar excess approximately 1% of the oligonucleotide becomes attached to the protein, and with the companion methyltransferases the yield approaches 40% for the EcoRI enzyme and 30% for the RsrI methyltransferase. Crosslinking proceeds only upon formation of a sequence-specific enzyme-DNA complex, and generates a covalent bond between the 3'-phosphate of the modified pyrophosphate in the substrate and a nucleophilic group at the active site of the enzyme. The reaction results in the elimination of an oligodeoxyribonucleotide remnant that contains the 3'-O-methylphosphate [5'(oligo1)3'-P(OCH3)] derived from the modified phosphate of the pyrophosphate linkage. Hydrolysis properties of the covalent protein-DNA adducts indicate that phosphoamide (P-N) bonds are formed with the EcoRI endonuclease and methyltransferase.  相似文献   

11.
Starting from thymidine, through a series of key synthetic transformations (e.g., Wittig reaction, hydroboration, Mitsunobu reaction and TEMPO oxidation) a nucleoside homologue bearing a phospho-carboxylic anhydride group at 6′ position was synthesized. The potential of polymerases to catalyze amide bond formation was investigated by using a modified primer with an amino group at 3′ position and the synthesized phosphoanhydro compound as substrate. Unfortunately, we did not observe the desired product either by gel electrophoresis or mass spectrometry. In contrast, the instability of the phosphoanhydro compound could lead to pyrophosphate formation and thus, to pyrophosphorolysis of the primer rather than to primer extension.  相似文献   

12.
Beef heart mitochondrial F1 possesses three pyrophosphate-binding sites, which comprises one high affinity binding site (Kd approximately equal to 1 microM) and two lower affinity sites (Kd approximately equal to 20 microM). High affinity pyrophosphate binding required the presence of Mg2+ in the incubation medium. Pyrophosphate competed with ADP, but not with Pi for binding to mitochondrial F1. Upon binding of 3 mol of pyrophosphate/mol of F1, one of the three tightly bound nucleotides present in native F1 was released. Like ADP and in contrast to Pi, pyrophosphate enhanced the fluorescence intensity of F1-bound aurovertin, and it prevented the photolabeling of F1 by 2-azido-ADP. As aurovertin and 2-azido-ADP are ligands of the beta subunit of F1, it is likely that pyrophosphate binds preferentially to the beta subunit. Whereas the binding affinity of F1 for Pi was increased by concentrations of pyrophosphate lower than 100 microM, it was decreased by a higher concentration of pyrophosphate. This biphasic effect of pyrophosphate on Pi binding was not observed with ADP, which, at all concentrations tested, inhibited Pi binding. Except for the effect of pyrophosphate on Pi binding to F1, for all the other effects, pyrophosphate mimicked ADP. It is suggested that pyrophosphate and ADP share the same binding site on F1 and that pyrophosphate interacts with the same amino acid residues as those interacting with the alpha and beta phosphate groups of ADP.  相似文献   

13.
Stitt M 《Plant physiology》1989,89(2):628-633
The product inhibition of potato (Solanum tuberosum) tuber pyrophosphate:fructose-6-phosphate phosphotransferase by inorganic pyrophosphate and inorganic phosphate has been studied. The binding of substrates for the forward (glycolytic) and the reverse (gluconeogenic) reaction is random order, and occurs with only weak competition between the substrate pair fructose-6-phosphate and pyrophosphate, and between the substrate pair fructose-1,6-bisphosphate and phosphate. Pyrophosphate is a powerful inhibitor of the reverse reaction, acting competitively to fructose-1,6-biphosphate and noncompetitively to phosphate. At the concentrations needed for catalysis of the reverse reaction, phosphate inhibits the forward reaction in a largely noncompetitive mode with respect to both fructose-6-phosphate and pyrophosphate. At higher concentrations, phosphate inhibits both the forward and the reverse reaction by decreasing the affinity for fructose-2,6-bisphosphate and thus, for the other three substrates. These results allow a model to be proposed, which describes the interactions between the substrates at the catalytic site. They also suggest the enzyme may be regulated in vivo by changes of the relation between metabolites and phosphate and could act as a means of controlling the cytosolic pyrophosphate concentration.  相似文献   

14.
A reaction which oligomerizes nucleotides under possible prebiotic conditions has been characterized. Nucleoside monophosphate in the presence of cyanamide at acid pH condenses to form dithymideine pyrophosphate and phosphodiester bonded compounds. Imidazole compounds and activated precursors such as nucleoside triphosphate are not necessary for this ologomerization reaction which produces primarily cyclic ologonucleotides.  相似文献   

15.
Allylic addition-elimination reactions are widely used in the enzyme-catalysed formation of terpenoid metabolites. It has earlier been shown that the isoprenoid chain elongation reaction catalysed by farnesyl pyrophosphate synthase involving successive condensations of dimethylallyl pyrophosphate (DMAPP) and geranyl pyrophosphate (GPP) with isopentenyl pyrophosphate (IPP) corresponds to such an SE' reaction with net syn stereochemistry for the sequential electrophilic addition and proton elimination steps. Studies of the enzymic cyclization of farnesyl pyrophosphate (FPP) to pentalenene have now established the stereochemical course of two additional biological SE' reactions. Incubation of both (9R)- and (9S)-[9-3H,4,8-14]FPP with pentalenene synthase and analysis of the resulting labelled pentalenene has revealed that H-9re of FPP becomes H-8 of pentalenene, while H-9si undergoes net intramolecular transfer to the adjacent carbon, becoming H-1re (H-1 alpha) of pentalenene, as confirmed by subsequent experiments with [10-2H, 11-13C]FPP. These results correspond to net anti-stereochemistry in the intramolecular allylic addition-elimination reaction. The stereochemical course of a second SE' reaction has now been examined by analogous incubations of (4S,8S)-[4,8-3H,4,8-14C]FPP and (4R,8R)-[4,8-3H, 4.8-14C]FPP with pentalenene synthase. Determination of the distribution of label in the derived pentalenenes showed stereospecific loss of the original H-8si proton. Analysis of the plausible conformation of the presumed reaction intermediates revealed that the stereochemical course of the latter reaction cannot properly be described as either syn or anti, since cyclization and subsequent double bond formation require significant internal motions to allow proper overlap of the scissile C-H bond with the developing carbocation.  相似文献   

16.
Microsomal membranes from Cicer arietinum (chick-pea) roots contained an ATP phosphohydrolase activity that could be solubilized by high-ionic-strength media. The enzyme has been purified to homogeneity by affinity and ion-exchange chromatography. It has the properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) that hydrolyses different nucleoside di- and tri-phosphates but has no activity towards monophosphoric esters and pyrophosphate. No stimulation by K+ could be demonstrated for either the membrane-bound or the purified enzyme, and therefore it would seem not to be related to the K+ -dependent ATPase postulated to mediate K+ transport in plants.  相似文献   

17.
Three photoreactive substrate analogues, o-azidophenethyl pyrophosphate, p-azidophenethyl pyrophosphate, and 3-azido-1-butyl pyrophosphate, have been synthesized as site-directed probes to label the catalytic site of prenyltransferase. Due to the relatively poor affinity of p-azidophenethyl pyrophosphate and 3-azido-1-butyl pyrophosphate for the enzyme, only o-azidophenethyl pyrophosphate (aryl azide) was utilized for photoaffinity labeling. This aryl azide has a UV absorption maximum at 250 nm. In the absence of activating light, binding studies demonstrate that the o-aryl azide competes for binding with both the natural substrates, isopentenyl pyrophosphate and geranyl pyrophosphate. More than 90% enzymatic activity is lost when enzyme is irradiated in the presence of the aryl azide as compared to irradiation in the absence of the azide, and the protein loses its capacity for substrate binding in direct proportion to photolabeling. A stoichiometry of 2 mol of affinity label covalently bound per mol of enzyme dimer was established with [1-3H]-o-azidophenethyl pyrophosphate. Since there are two catalytic sites per enzyme dimer, the o-aryl azide appears specifically to label the enzyme at its catalytic sites. Additional evidence that the reagent was specific for the catalytic site came from the observation that farnesyl pyrophosphate afforded complete protection against photoinactivation, while isopentenyl pyrophosphate provided partial protection. Gel isoelectric focusing verified this stoichiometry and indicated that the labeled enzyme has a more acidic isoelectric point than the native enzyme.  相似文献   

18.
Long chain cis-prenyltransferase in rat liver microsomes was studied using various allylic isoprenoid substrates. Microsomes could utilize trans-geranyl pyrophosphate, but not cis-geranyl pyrophosphate for polyprenyl pyrophosphate synthesis. Both trans, trans-farnesyl pyrophosphate and trans,cis-farnesyl pyrophosphate were used as substrates with Km values of 24 and 5 microM, respectively. trans,trans,cis-Geranylgeranyl pyrophosphate could be used as substrate with an apparent Km of 36 microM. trans,trans,trans-Geranylgeranyl pyrophosphate was also utilized as substrate, but with a very low affinity. After pulse labeling for 4 min, using [3H]isopentenyl pyrophosphate and trans,trans-farnesyl pyrophosphate, the only product formed was trans,trans,cis-geranylgeranyl pyrophosphate, which, upon chasing, yielded polyprenyl pyrophosphate. Independent of the nature of the substrate used, even in the case of polyprenyl 12-pyrophosphate and all-trans-nonaprenyl pyrophosphate, the chain lengths of the products were identical, i.e. polyprenyl pyrophosphates with 15-18 isoprene residues. Microsomes were able to synthesize trans,trans-farnesyl pyrophosphate using trans-geranyl pyrophosphate as substrate. The results indicate that rat liver microsomes contain a farnesyl pyrophosphate synthase activity and that the reaction catalyzed by cis-prenyltransferase may consist of two individual steps, i.e. synthesis of trans,trans,cis-geranylgeranyl pyrophosphate and elongation of this product to long chain polyprenyl pyrophosphates.  相似文献   

19.
The MutT protein, which prevents AT----CG transversions during DNA replication, hydrolyzes nucleoside triphosphates to yield nucleoside monophosphates and pyrophosphate. The hydrolysis of dGTP by the MutT protein in H(2)18O-enriched water, when monitored by high resolution 31P NMR spectroscopy at 242.9 MHz, showed 18O labeling of the pyrophosphate product, as manifested by a 0.010 +/- 0.002 ppm upfield shift of the pyrophosphate resonance, and no labeling of the dGMP product. This establishes that the reaction proceeds via a nucleophilic substitution at the beta-phosphorus of dGTP with displacement of dGMP as the leaving group. No exchange of 32P-labeled dGMP into dGTP was detected, indicating that water attacks dGTP directly or, less likely, an irreversibly formed pyrophosphoryl-enzyme intermediate. No exchange of 32P-labeled pyrophosphate into dGTP was observed, consistent with nucleophilic substitution at the beta-phosphorus of dGTP. Only six enzymes, all synthetases, have previously been shown to catalyze nucleophilic substitution at the beta-phosphorus of nucleoside triphosphate substrates. The MutT protein is the first hydrolase shown to do so.  相似文献   

20.
A simple, reliable, and an efficient “one-pot, three step” chemical method for the synthesis of modified nucleoside triphosphates such as 5-methylcytidine-5′-triphosphate (5-MeCTP), pseudouridine-5′-triphosphate (pseudoUTP) and N1-methylpseudouridine-5′-triphosphate (N1-methylpseudoUTP) starting from the corresponding nucleoside is described. The overall reaction involves the monophosphorylation of nucleoside, followed by the reaction with pyrophosphate and subsequent hydrolysis of the cyclic intermediate to furnish the corresponding NTP in moderate yields with high purity (>99.5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号