首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DSS1 encodes a small acidic protein shown in recent structural studies to interact with the DNA binding domain of BRCA2. Here we report that an ortholog of DSS1 is present in Ustilago maydis and associates with Brh2, the BRCA2-related protein, thus recapitulating the protein partnership in this genetically amenable fungus. Mutants of U. maydis deleted of DSS1 are extremely radiation sensitive, deficient in recombination, defective in meiosis, and disturbed in genome stability; these phenotypes mirror previous observations of U. maydis mutants deficient in Brh2 or Rad51. These findings conclusively show that Dss1 constitutes a protein with a significant role in the recombinational repair pathway in U. maydis, and imply that it plays a similar key role in the recombination systems of organisms in which recombinational repair is BRCA2 dependent.  相似文献   

2.
The use of fungal model systems, such as Saccharomyces cerevisisae and Schizosaccharomyces pombe, has contributed enormously to our understanding of essential cellular processes in animals. Here, we introduce the corn smut fungus Ustilago maydis as a new model organism for studying cell biological processes. Genome-wide analysis demonstrates that U. maydis is more closely related to humans than to budding yeast, and numerous proteins are shared only by U. maydis and Homo sapiens. Growing evidence suggests that basic principles of long-distance transport, mitosis and motor-based microtubule organization are conserved between U. maydis and humans. The fungus U. maydis, therefore, offers a unique system for the study of certain mammalian processes.  相似文献   

3.
In a screen for DNA repair-defective mutants in the fungus Ustilago maydis, a gene encoding a BRCA2 family member, designated here as Brh2, was identified. A brh2 null allele was found to be defective in allelic recombination, meiosis, and repair of gaps and ionizing radiation damage to the same extent as rad51. Frequent marker loss in meiosis and diploid formation suggested that genomic instability was associated with brh2. This notion was confirmed by molecular karyotype analysis, which revealed gross chromosomal alterations associated with brh2. Yeast two-hybrid analysis indicated interaction between Brh2 and Rad51. Recapitulation in U. maydis of defects in DNA repair and genome stability associated with brh2 means that the BRCA2 gene family is more widespread than previously thought.  相似文献   

4.
A study of the proteins involved in the synthesis and structure of the cell wall of Ustilago maydis was made by in silico analysis of the fungal genome, with reference to supporting experimental evidence. The composition of the cell wall of U. maydis shows similarities with the structural composition of the walls of Ascomycetes, but also shows important differential features. Accordingly, the enzymes involved in the synthesis of the U. maydis wall polysaccharides chitin and beta-1,6 glucans displayed some differential characteristics. The most salient difference in protein composition was the predicted absence of Pir proteins, an important class of proteins present in the Ascomycetes. Other classes of proteins that are covalently-linked to the wall in Ascomycetes, including those bound through disulfide linkages, joined by alkali-labile bonds, and GPI proteins, were predicted to be present in the U. maydis walls. The main characteristic of the exo-cellular, non-covalently-bound proteins was their relative low number, especially for hydrolytic enzymes.  相似文献   

5.
6.
Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.  相似文献   

7.
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.  相似文献   

8.
9.
10.
The Ustilaginales as plant pests and model systems   总被引:5,自引:0,他引:5  
The Ustilaginales are a vast and diverse group of fungi, which includes the plant pathogenic smuts that cause significant losses to crops worldwide. Members of the Ustilaginales are also valuable models for the unraveling of fundamental mechanisms controlling important biological processes. Ustilago maydis is an important fungal model system and has been well studied with regard to mating, morphogenesis, pathogenicity, signal transduction, mycoviruses, DNA recombination, and, recently, genomics. In this review we discuss the life cycles of members of the Ustilaginales and provide background on their economic impact as agricultural pests. We then focus on providing a summary of the literature with special attention to topics not well covered in recent reviews such as the use of U. maydis in mycovirus research and as a model for understanding the molecular mechanisms of fungicide resistance and DNA recombination and repair.  相似文献   

11.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.  相似文献   

12.
孙敏  陈天宇  冯红 《微生物学通报》2021,48(5):1648-1661
[背景]耐辐射微生物是一类重要的极端微生物资源,在研究其耐受机制以及环境保护等方面具有重大的意义.[目的]从基因组和转录组角度解析耐辐射藤黄微球菌(Micrococcus luteus) V017的抗性遗传背景以及对辐照的转录组响应.[方法]利用PacBio平台对菌株V017进行基因组测序,通过比较基因组分析菌株V01...  相似文献   

13.
Ustilago maydis, a Basidiomycete fungus that infects maize, exhibits two basic morphologies, a yeast-like and a filamentous form. The yeast-like cell is elongated, divides by budding, and the bud grows by tip extension. The filamentous form divides at the apical cell and grows by tip extension. The repertoire of morphologies is increased during interaction with its host, suggesting that plant signals play an important role in generation of additional morphologies. We have used Saccharomyces cerevisiae and Schizosaccharomyces pombe genes known to play a role in cell polarity and morphogenesis, and in the cytoskeleton as probes to survey the U. maydis genome. We have found that most of the yeast machinery is conserved in U. maydis, albeit the degree of similarity varies from strong to weak. The U. maydis genome contains the machinery for recognition and interpretation of the budding yeast axial and bipolar landmarks; however, genes coding for some of the landmark proteins are absent. Genes coding for cell polarity establishment, exocytosis, actin and microtubule organization, microtubule plus-end associated proteins, kinesins, and myosins are also present. Genes not present in S. cerevisiae and S. pombe include a homolog of mammalian Rac, a hybrid myosin-chitin synthase, and several kinesins that exhibit more similarity to their mammalian counterparts. We also used the U. maydis genes identified in this analysis to search other fungal and other eukaryotic genomes to identify the closest homologs. In most cases, not surprisingly, the closest homolog is among filamentous fungi, not the yeasts, and in some cases it is among mammals.  相似文献   

14.
The focus of many fungal endophyte studies has been how plants benefit from endophyte infection. Few studies have investigated the role of the host plant as an environment in shaping endophyte community diversity and composition. The effects that different attributes of the host plant, that is, host genetic variation, host variation in resistance to the fungal pathogen Ustilago maydis and U. maydis infection, have on the fungal endophyte communities in maize (Zea mays) was examined. The internal transcribed spacer (ITS) region of the rDNA was sequenced to identify fungi and the endophyte communities were compared in six maize lines that varied in their resistance to U. maydis. It was found that host genetic variation, as determined by maize line, had significant effects on species richness, while the interactions between line and U. maydis infection and line and field plot had significant effects on endophyte community composition. However, the effects of maize line were not dependent on whether lines were resistant or susceptible to U. maydis. Almost 3000 clones obtained from 58 plants were sequenced to characterize the maize endophyte community. These results suggest that the endophyte community is shaped by complex interactions and factors, such as inoculum pool and microclimate, may be important.  相似文献   

15.
Ustilago maydis establishes a biotrophic relationship with its host plant, i.e. plant cells stay alive despite massive fungal growth in infected tissue. The genome sequence has revealed that U. maydis is poorly equipped with plant cell wall degrading enzymes and uses novel secreted protein effectors as crucial determinants for biotrophic development. Many of these effector genes are clustered and differentially regulated during plant colonization. In this review, we analyze the secretome of U. maydis by differentiating between secreted enzymes, likely structural proteins of the fungal cell wall (excluding GPI-anchored proteins) as well as likely effectors with either apoplastic or cytoplasmic function. This classification is based on the presence of functional domains, general domain structure and cysteine pattern. In addition, we discuss possible functions of selected protein classes with a special focus on disease development.  相似文献   

16.
The phytopathogenic basidiomycete Ustilago maydis has become a model system for the analysis of plant-pathogen interactions. The genome sequence of this organism will soon be available, increasing the need for techniques to analyse gene function on a broad basis. We describe a heterologous transposition system for U. maydis that is based on the Caenorhabditis transposon Tc1, which is known to function independently of host factors and to be active in evolutionarily distant species. We have established a nitrate reductase based two-component counterselection system to screen for Tc1 transposition. The element was shown to be functional and transposed to several different locations in the genome of U. maydis. The insertion pattern observed was consistent with the proposed general mechanism of Tc1/mariner integration and constitutes a proof of principle for the first heterologous transposition system in a basidiomycete species. By mapping the insertion site context to known genomic sequences, Tc1 insertion events were shown to occur on different chromosomes, but exhibit a preference for non-coding regions. Only 20% of the insertions were found in putative open reading frames. The establishment of this system will permit efficient gene tagging in U. maydis and possibly also in other fungi.  相似文献   

17.
There are a number of yeasts that secrete killer toxins, i.e., proteins lethal to sensitive cells of the same or related species. Ustilago maydis, a fungal pathogen of maize, also secretes killer toxins. The best characterized of the U. maydis killer toxins is the KP6 toxin, which consists of two small polypeptides that are not covalently linked. In this work, we show that both are encoded by one segment of the genome of a double-stranded RNA virus. They are synthesized as a preprotoxin that is processed in a manner very similar to that of the Saccharomyces cerevisiae k1 killer toxin, also encoded by a double-strand RNA virus. Active U. maydis KP6 toxin was secreted from S. cerevisiae transformants expressing the KP6 preprotoxin. The two secreted polypeptides were not glycosylated in U. maydis, but one was glycosylated in S. cerevisiae. Comparison of known and predicted cleavage sites among the five killer toxins of known sequence established a three-amino-acid specificity for a KEX2-like enzyme and predicted a new, undescribed processing enzyme in the secretory pathway in the fungi. The mature KP6 toxin polypeptides had hydrophobicity profiles similar to those of other known cellular toxins.  相似文献   

18.
The goal of this research was to determine mechanisms of interaction between endophytic strains of Fusarium verticillioides (Sacc.) Nirenberg and the pathogen, Ustilago maydis (DC) (Corda). Endophytic strains of the fungus F. verticillioides are commonly found in association with maize (Zea mays) and when co-inoculated with U. maydis, often lead to decreased disease severity caused by the pathogen. Here, we developed methods (liquid chromatography-mass spectrometry) to evaluate changes in relative concentration of metabolites produced during in vitro interactions between the endophyte and pathogen. Fungi were grown on two different media, in single and in confronted cultures. We used real-time PCR (qPCR) assays to measure relative changes in fungal biomass, that occurred in confronted cultures compared to single cultures. The results showed that most secondary metabolites are constitutively produced by each species. Metabolite profiles are complex for U. maydis (twenty chromatographic peaks detected) while relatively fewer compounds were detected for F. verticillioides (six chromatographic peaks). In confronted cultures, metabolite ratio (metabolite concentration/biomass) generally increases for U. maydis metabolites while no significant changes were observed for most F. verticillioides metabolites. The results show that F. verticillioides is a strong antagonist of U. maydis as its presence leads to large reductions in U. maydis biomass. We infer that few U. maydis metabolites likely serve antibiotic functions against F. verticillioides. The methods described here are sufficiently sensitive to detect small changes in biomass and metabolite concentration associated with differing genotypes of the interacting species.  相似文献   

19.
The BRCA2 tumor suppressor functions in repair of DNA by homologous recombination through regulating the action of Rad51. In turn, BRCA2 appears to be regulated by other interacting proteins. Dss1, a small interacting protein that binds to the C-terminal domain, has a profound effect on activity as deduced from studies on the BRCA2-related protein Brh2 in Ustilago maydis. Evidence accumulating in mammalian systems suggests that BCCIP, another small interacting protein that binds to the C-terminal domain of BRCA2, also serves to regulate homologous recombination activity. Here we were interested in testing the role of the putative U. maydis BCCIP ortholog Bcp1 in DNA repair and recombination. In keeping with the mammalian paradigm, Bcp1 bound to the C-terminal region of Brh2. Mutants deleted of the gene were extremely slow growing, showed a delay passing through S phase and exhibited sensitivity to hydroxyurea, but were otherwise normal in DNA repair and homologous recombination. In the absence of Bcp1 cells were unable to maintain the wild type morphology when challenged by a DNA replication stress. These results suggest that Bcp1 could be involved in coordinating morphogenetic events with DNA processing during replication.  相似文献   

20.
During its haploid phase the dimorphic fungus Ustilago maydis grows vegetatively by budding. We have identified two genes, don1 and don3, which control the separation of mother and daughter cells. Mutant cells form tree-like clusters in liquid culture and grow as ring-like (donut-shaped) colonies on solid medium. In wild-type U. maydis cells, two distinct septa are formed during cytokinesis and delimit a fragmentation zone. Cells defective for either don1 or don3 display only a single septum and fail to complete cell separation. don1 encodes a guanine nucleotide exchange factor (GEF) of the Dbl family specific for Rho/Rac GTPases. Don3 belongs to the germinal-centre-kinase (GC) subfamily of Ste20-like protein kinases. We have isolated the U. maydis homologues of the small GTP binding proteins Rho2, Rho3, Rac1 and Cdc42. Out of these, only Cdc42 interacts specifically with Don1 and Don3 in the yeast two-hybrid system. We propose that Don1 and Don3 regulate the initiation of the secondary septum, which is required for proper cell separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号