首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rate of aminoacylation of tRNA catalyzed by the isoleucyl-tRNA synthetase form Escherichia coli has been measured. A steady-state kinetic analysis of the rate as a function of the concentration of ATP gave nonlinear Hanes plots. ATP behaves as an activator of the reaction. The activation is observed at a low magnesium ion concentration and in the presence of spermidine. The presence of inorganic pyrophosphate or AMP enhances the activation. The results are consistent with a mechanism in which the binding of a second molecule of ATP increases the rate of dissociation of Ile-tRNA from the enzyme.  相似文献   

3.
4.
The Escherichia coli aroA gene which codes for the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase) has been cloned from the lambda-transducing bacteriophage lambda pserC. The gene has been located on a 4.7 kilobase pair PstI DNA fragment which has been inserted into the multiple copy plasmid pAT153. E. coli cells transformed with this recombinant plasmid overproduce EPSP synthase 100-fold. A simple method for the purification of homogeneous enzyme in milligram quantities has been devised. The resulting enzyme is indistinguishable from enzyme isolated from untransformed E. coli.  相似文献   

5.
Lysyl-tRNA synthetase from Thermus thermophilus has been cocrystallized with either its cognate tRNAlYS or Escherichia coli tRNAlys using ammonium sulfate as precipitant. The crystals grow from solutions containing a 1:2.5 stoichiometry of synthetase dimer to tRNA in 18–22% ammonium sulfate in 50 mM Tris-maleate buffer at pH 7.5. Both complexes form square prismatic, tetragonal crystals with very similar unit cell parameters (a = b = 233 Å, c = 119 Å) and diffract to at least 2.7 Å resolution. However the homocomplex is of space group P4212 and the heterocomplex of space group I422. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Purified penicillinase, in gram quantities, has been prepared from Escherichia coli strain W3310 by using methods developed to handle large amounts of material. The final product had a specific enzyme activity of 3.08 units/mug of protein, which was over twice as high as that reported previously (Datta & Richmond, 1966). The purified enzyme was similar to that from E. coli strain TEM, but different in molecular weight and some other respects. The differences observed may be a result of the greater purity obtained.  相似文献   

7.
Natural evolution has resulted in protein molecules displaying a wide range of binding properties that include extremes of affinity and specificity. A detailed understanding of the principles underlying protein structure-function relationships, particularly with respect to binding properties, would greatly enhance molecular engineering and ligand design studies. Here, we have analyzed the interactions of an aminoacyl-tRNA synthetase for which strong evolutionary pressure has enforced high specificity for substrate binding and catalysis. Electrostatic interactions have been identified as one efficient mechanism for enhancing binding specificity; as such, the effects of charged and polar groups were the focus of this study. The binding of glutaminyl-tRNA synthetase from Escherichia coli to several ligands, including the natural substrates, was analyzed. The electrostatic complementarity of the enzyme to its ligands was assessed using measures derived from affinity optimization theory. The results were independent of the details of the calculational parameters, including the value used for the protein dielectric constant. Glutamine and ATP, two of the natural ligands, were found to be extremely complementary to their binding sites, particularly in regions seen to make electrostatic interactions in the structure. These data suggest that the optimization of electrostatic interactions has played an important role in guiding the evolution of this enzyme. The results also show that the enzyme is able to effectively select for high affinity and specificity for the same chemical moieties both in the context of smaller substrates, and in that of a larger reactive intermediate. The regions of greatest non-complementarity between the enzyme and ligands are the portions of the ligand that make few polar contacts with the binding site, as well as the sites of chemical reaction, where overly strong electrostatic binding interactions with the substrate could hinder catalysis. The results also suggest that the negative charge on the phosphorus center of glutaminyl-adenylate plays an important role in the tight binding of this intermediate, and thus that adenylate analogs that preserve the negative charge in this region may bind substantially tighter than analogs where this group is replaced with a neutral group, such as the sulfamoyl family, which can make similar hydrogen bonds but is uncharged.  相似文献   

8.
Overproduction of the repressor protein from the Tn10-encoded tetracycline resistance operon is achieved by placement of the respective gene under control of bacteriophage lambda promoter PL in a vector-host system. All cloning steps have to be carried out under repressed conditions to assure survival of the cell. The cI 857 mutation is used to control expression of the tetR gene in large scale fermentation. After induction, the overproducing Escherichia coli strain continues to grow for 2.5 generations before growth terminates. In the expression phase, active TET repressor comprises up to 13% of the total soluble protein. A procedure is described to purify the TET repressor protein to homogeneity on a large scale. Starting from a 10 litre culture, approximately 250 mg of homogeneous, active TET repressor are obtained. The amino acid sequence of the N and C termini are in agreement with the gene start and stop determined from the nucleotide sequence of the Tn10 tetR gene.  相似文献   

9.
10.
Based on the rationale that Escherichia coli cells containing increased levels of prolipoprotein signal peptidase would be highly resistant to globomycin, a specific inhibitor of the prolipoprotein signal peptidase, we have isolated a clone from the Carbon-Clarke collection, plasmid pLC3-13, which is globomycin-resistant and contains an increased level of prolipoprotein signal peptidase activity. The plasmid pMT521, a subclone of pLC3-13 in pBR322, conferred on its host cells approximately 20 times overproduction of prolipoprotein signal peptidase and an extremely high level of resistance against globomycin. The overproduced prolipoprotein signal peptidase was completely inhibited by the presence of globomycin in the in vitro assay, and the overproduced activity was found in the cell envelope fraction. Several lines of biochemical and genetic evidence suggest that the gene contained in pLC3-13 and its derivative clones is most likely the structure gene (lsp) for prolipoprotein signal peptidase.  相似文献   

11.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

12.
The genes for a threonine deaminase that is resistant to feedback inhibition by L-isoleucine and for an active acetohydroxyacid synthase II were introduced by a plasmid into a L-threonine-producing recombinant strain of Escherichia coli K-12. Analysis of culture broth of the strain using 13C nuclear magnetic resonance suggested that alpha, beta-dihydroxy-beta-methylvalerate (DHMV) and alpha-keto-beta-methylvalerate (KMV), the third and the fourth intermediates in the L-isoleucine biosynthetic pathway from L-threonine, respectively, accumulated in the medium in amounts comparable to that of L-isoleucine. The ratio of accumulated L-isoleucine:DHMV:KMV were approximately 2:1:1. The concentration of accumulated L-isoleucine increased by twofold after the additional introduction of the genes for dihyroxyacid dehydratase (DH) and transaminase-B (TA-B), and the intermediates no longer accumulated. The resultant strain TVD5 accumulated 10 g/l of L-isoleucine from 40 g/l of glucose.  相似文献   

13.
The ability of cAMP to inhibit isoleucyl-tRNA synthetase (IRS) formation has been demonstrated in wild type K-12 Escherichia coli and two adenyl-cyclase (cya) mutants. cAMP appeared not to have any effect on either the valyl- or arginyl-tRNA synthetase (VRS and ARS respectively). Addition of cAMP led to a reduction in rate of IRS synthesis but not VRS or ARS. Furthermore, derepression of IRS and VRS by isoleucine limitation was completely prevented by cAMP.Abbreviations IRS isoleucyl-tRNA synthetase - VRS valyl-tRNA synthetase - ARS arginyl-tRNA synthetase - cAMP cyclic adenosine-3,5-monophosphate - Cya adenyl cyclase Gene - CRP cAMP receptor protein - O.D. optical density  相似文献   

14.
15.
The binding of tRNAIIe to isoleucyl-tRNA synthetase in the presence of isoleucine or ATP was investigated using the equilibrium partition method. Isoleucine decreased the affinity of tRNAIIe for the enzyme by a factor of about 5. For the free standard energy of interaction a value of about 1 kcal/mol (4.2 kJ/mol) was calculated. ATP exhibits qualitatively the same effect as isoleucine. A binding of two molecules isoleucine per molecule of enzyme could not be demonstrated even in the presence of ATP and pyrophosphatase.  相似文献   

16.
d-Desthiobiotin synthetase, an enzyme that catalyzes the synthesis of d-desthiobiotin from dl-7,8-diaminopelargonic acid and HCO(3) (-), was purified 100-fold from cells of a biotin mutant strain of Escherichia coli. Adenosine triphosphate and Mg(2+) were shown, especially in purified extracts, to be obligatory for enzyme activity, although concentrations higher than 5 mm caused severe inhibition of the reaction with unpurified cell-free extracts. Adenosine diphosphate and adenosine monophosphate were shown to inhibit the reaction, but fluoride (up to 50 mm) had no detectable effect. The product of the enzyme reaction was identical to d-desthiobiotin on the basis of biological activity and chromatography. Furthermore, when H(14)CO(3) (-) was used as a substrate, the radioactive product was shown to be (14)C-desthiobiotin labeled exclusively in the ureido carbon.  相似文献   

17.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

18.
19.
Summary The genetic determinant of the -hemolysin encoded by plasmid pHly152 has been cloned in both orientations in plasmid pBR322 giving rise to plasmids pSU157 and pSU158. E. coli strains carrying either of these recombinant Hly plasmids produced about 20 times more hemolysin activity than the parental plasmid pHly152, when grown in minimal medium supplemented with hemoglobin. Thus high hemolytic activity is not lethal to the cells, contrary to previous assumptions.-hemolysin was purified from culture supernatants of strain SU100 (pSU157) by ammonium sulfate precipitation and gel filtration in Sephacryl S-200 in the presence of 6 M urea. When purified -hemolysin preparations were subjected to electrophoretic analysis in denaturing conditions, a single 107 kdal polypeptide was observed. This probably corresponds to the -hemolysin protein, since an isogenic E. coli strain carrying plasmid pSU161, an Hly- mutant derivative of pSU157, did not synthesize the 107 kdal polypeptide.  相似文献   

20.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUC18, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15% of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号