首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal proteomic analysis of human cerebrospinal fluid (CSF) requires depletion of high-abundance proteins to facilitate observation of low-abundance proteins. The performance of two immunodepletion (MARS, Agilent Technologies and ProteoSeek, Pierce Biotechnology) and one ultrafiltration (50 kDa molecular weight cutoff filter, Millipore Corporation) methods for depletion of abundant CSF proteins were compared using a graphical method to access the depth of analysis using "marker proteins" with known normal concentration ranges. Two-dimensional LC/MS/MS analysis of each depleted sample yielded 171 and 163 unique protein identifications using the MARS and ProteoSeek immunodepletion methods, respectively, while only 46 unique proteins were identified using a 50 kDa molecular weight cutoff filter. The relative abundance of the identified proteins was estimated using total spectrum counting and compared to the concentrations of 45 known proteins in CSF as markers of the analysis depth. Results of this work suggest a clear need for methodology designed specifically for depletion of high-abundance proteins in CSF, as depletion methods designed to deplete high-abundance serum proteins showed little improvement in analysis depth compared to analysis without depletion. The marker protein method should be generally useful for assessing depth of analysis in the comparison of proteomic analysis methods.  相似文献   

2.

Background

Alzheimer’s disease (AD) is the most common type of dementia affecting people over 65 years of age. The hallmarks of AD are the extracellular deposits known as amyloid β plaques and the intracellular neurofibrillary tangles, both of which are the principal players involved in synaptic loss and neuronal cell death. Tau protein and Aβ fragment 1–42 have been investigated so far in cerebrospinal fluid as a potential AD biomarkers. However, an urgent need to identify novel biomarkers which will capture disease in the early stages and with better specificity remains. High-throughput proteomic and pathway analysis of hippocampal tissue provides a valuable source of disease-related proteins and biomarker candidates, since it represents one of the earliest affected brain regions in AD.

Results

In this study 2954 proteins were identified (with at least 2 peptides for 1203 proteins) from both control and AD brain tissues. Overall, 204 proteins were exclusively detected in AD and 600 proteins in control samples. Comparing AD and control exclusive proteins with cerebrospinal fluid (CSF) literature-based proteome, 40 out of 204 AD related proteins and 106 out of 600 control related proteins were also present in CSF. As most of these proteins were extracellular/secretory origin, we consider them as a potential source of candidate biomarkers that need to be further studied and verified in CSF samples.

Conclusions

Our semiquantitative proteomic analysis provides one of the largest human hippocampal proteome databases. The lists of AD and control related proteins represent a panel of proteins potentially involved in AD pathogenesis and could also serve as prospective AD diagnostic biomarkers.  相似文献   

3.
The shotgun proteomic based on the approach of tandem mass tag (TMT) labeling has received increasing attention for neuroproteomics analysis and becomes an effective tool for the identification and quantification of a large number of proteins for the purpose of revealing key proteins involved in the neuronal dysfunction and an inflammatory response associated with neurodegenerative disorders. To assess the potential expression difference of proteins in cerebrospinal fluids (CSF) between Creutzfeldt–Jakob disease (CJD) and non-CJD patients, the pooled CSF samples from 39 Chinese probable sporadic CJD (sCJD) patients and from 52 non-CJD cases were comparably analyzed with the methodology of TMT labeling and RP-RP-UPLC-MS/MS. Totally, 437 possible proteins were identified in the tested CSF specimen, among them, 49 proteins with 95 % confidence interval. Differential assays showed among those 49 CSF proteins, 12 were upregulated and 13 were downregulated significantly in the sCJD compared to non-CJD. The most affected pathway of the differential expression proteins in CSF of sCJD was complement and coagulation cascade. Western blots for six selected changed proteins in the pooled CSF samples revealed the similar altering profiles in the groups of sCJD and non-CJD as proteomics. Furthermore, CSF samples from 24 CJD patients and 24 non-CJD patients were randomly selected and subjected individually into the Western blots of an increased protein (phosphoglycerate mutase 1) and a decreased one (alpha-1-antichymotrysin), which also confirmed the altering tendency of these identified proteins. Those data indicate that proteomic assay of CSF is a powerful technique not only for selection of the potential biomarkers for the development of diagnostic tool of CJD but also for supplement of useful scientific clues for understanding the CSF homeostasis during the pathogenesis of prion diseases.  相似文献   

4.
Cerebrospinal fluid (CSF) is a potential source of biomarkers for many disorders of the central nervous system, including Alzheimer disease (AD). Prior to comparing CSF samples between individuals to identify patterns of disease-associated proteins, it is important to examine variation within individuals over a short period of time so that one can better interpret potential changes in CSF between individuals as well as changes within a given individual over a longer time span. In this study, we analyzed 12 CSF samples, composed of pairs of samples from six individuals, obtained 2 weeks apart. Multiaffinity depletion, two-dimensional DIGE, and tandem mass spectrometry were used. A number of proteins whose abundance varied between the two time points was identified for each individual. Some of these proteins were commonly identified in multiple individuals. More importantly, despite the intraindividual variations, hierarchical clustering and multidimensional scaling analysis of the proteomic profiles revealed that two CSF samples from the same individual cluster the closest together and that the between-subject variability is much larger than the within-subject variability. Among the six subjects, comparison between the four cognitively normal and the two very mildly demented subjects also yielded some proteins that have been identified in previous AD biomarker studies. These results validate our method of identifying differences in proteomic profiles of CSF samples and have important implications for the design of CSF biomarker studies for AD and other central nervous system disorders.  相似文献   

5.

Background

Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.

Results

After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson''s) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node.

Conclusions

Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.  相似文献   

6.
The impact of blood contamination on the proteome of cerebrospinal fluid   总被引:1,自引:0,他引:1  
Human cerebrospinal fluid (CSF) is in direct contact with the brain extracellular space. Beside the secretion of CSF by the choroid plexus the fluid also derives directly from the brain by the ependymal lining of the ventricular system and the glial membrane and from blood vessels in the arachnoid. Therefore, biochemical change in the brain may be reflected in the CSF. CSF is a potential source of protein molecular indices of central nervous system function and pathology. However, various amounts of blood contamination in CSF may arise during sample acquisition. The concentration of protein in the CSF is only 0.2 to 0.5% that of blood. Minor contamination of CSF with blood during collection of the fluid may dramatically alter the protein profile confounding the identification of potential biomarkers. We have analyzed CSF and CSF spiked with increasing amounts of whole blood using proteomic techniques. We detected at least four blood specific highly abundant proteins: hemoglobin, catalase, peroxiredoxin and carbonic anhydrase I. These proteins can be used as blood contamination markers for proteomic analysis of CSF. Proteins in blood contaminated CSF samples were less stable compared to neat CSF at 37 degrees C suggesting that blood borne protease may induce protein degradation in CSF during sample acquisition. This analysis was aimed at identification of proteins found primarily in CSF, those found primarily in blood and assessment of the impact of blood contamination on those proteins found in both fluids.  相似文献   

7.
Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii   总被引:3,自引:0,他引:3  
Kawase O  Nishikawa Y  Bannai H  Zhang H  Zhang G  Jin S  Lee EG  Xuan X 《Proteomics》2007,7(20):3718-3725
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.  相似文献   

8.
To better understand the pathophysiologic mechanisms underlying Guillain-Barré syndrome (GBS), Comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with GBS (the experiment group) and control subjects suffering from other neurological disorders (the control group) was carried out using two-dimensional gel electrophoresis (2-DE) technique, in combination with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and database searching to determine abnormal CSF proteins in GBS patients. Image analysis of 2-DE gels silver stained revealed that 10 protein spots showed significant differential expression between the two groups of CSF samples. The expression of cystatin C, transthyretin, apolipoprotein E and heat shock protein 70 were decreased. However, haptoglobin, alpha-1-antitrypsin, apolipoprotein A-IV and neurofilaments were elevated. The subsequent ELISA measured the concentration of cystatin C and confirmed the result of the proteomic analysis. These identified proteins may be involved in the pathophysiological process of GBS and call for further studying the role of these proteins in the pathogenesis of the disease.  相似文献   

9.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with complex immunopathogenesis. Using the 2‐D DIGE technology, we separate CSF proteins from patients with active MS and control subjects. Three of the seven differential proteins identified were related with complement system, and the network analysis of the differential proteins revealed complement activation involvement in active MS. Complement C4b (gamma chain) was confirmed elevated by performing western blotting analysis (P < 0.01). The present results are an independent quantitative proteomic measure in CSF from active MS patients. The differential expression of the complement C4b and related proteins in CSF provides potential biomarkers as well as evidence for the involvement of complement activation in the pathogenesis of MS disease. J. Cell. Biochem. 112: 1930–1937, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Liu XD  Zeng BF  Xu JG  Zhu HB  Xia QC 《Proteomics》2006,6(3):1019-1028
To better understand the pathophysiologic mechanisms underlying spinal nerve root injury induced by lumbar disk herniation (LDH), comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with LDH (the experiment group) and the otherwise healthy patients who had had implants removed from healed fractures in the lower limbs (the control group) was carried out using 2-DE followed by LC-IT-MS and database searching. Image analysis of silver-stained 2-DE gels revealed that 15 protein spots showed significant differential expression between the two groups of CSF samples (p < 0.05). After searching the database we found that in CSF of LDH patients, the expression of cystatin C, apolipoprotein A-IV, vitamin D-binding protein, neurofilament triplet L protein, IgG, tetranectin, and hemoglobin were elevated. However, ProSAAS, prostagladin D2 synthase, creatine kinase B, superoxide dismutase 1 and peroxiredoxin 2 were decreased. The subsequent ELISA measured the concentration of tetranectin, vitamin D-binding protein and cystatin C and confirmed the results of proteomic analysis. These identified proteins are involved in the pathophysiological process of spinal nerve root injury caused by herniated lumbar disk. The functional implications of the alterations in the levels of these proteins are discussed in this paper.  相似文献   

11.
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor neuron disease, which usually leads to death within a few years. The diagnosis is mainly based on clinical symptoms and there is a need for ALS-specific biomarkers to make an early and precise diagnosis, for development of disease-modifying drugs and to gain new insights into pathophysiology.

Areas covered: In the present review, we summarize studies using mass spectrometric (MS) approaches to identify protein alterations in the cerebrospinal fluid (CSF) of ALS patients. In total, we identified 11 studies fulfilling our criteria by searching in the PubMed database using the keywords ‘ALS’ and ‘CSF’ combined with ‘proteome’, ‘proteomic’, ‘mass spectrometry’ or ‘protein biomarker’. Ten proteins were differently regulated in ALS CSF compared to controls in at least 2 studies. We will discuss the relevance of the identified proteins regarding the frequency of identification, extent of alteration and brain-specificity.

Expert commentary: Most of the identified CSF biomarker candidates are irreproducible or mainly blood-derived. We assign the missing success of CSF proteomic studies in biomarker discovery to a lack of sensitivity, unsuitable normalization, low quality assurance and variations originating from sample preparation. These issues must be improved in future proteomic studies in CSF.  相似文献   


12.
The monitoring of changes in the protein composition of the cerebrospinal fluid (CSF) can be used as a sensitive indicator of central nervous system (CNS) pathology, yet its systematic application to analysis of CNS neoplasia has been limited. There is a pressing need for both a better understanding of gliomagenesis and the development of reliable biomarkers of the disease. In this report, we used two proteomic techniques, two-dimensional gel electrophoresis (2-DE), and cleavable Isotope-Coded Affinity Tag (cICAT) to compare CSF proteomes to identify tumor- and grade-specific biomarkers in patients bearing brain tumors of differing histologies and grades. Retrospective analyses were performed on 60 samples derived from astrocytomas WHO grade II, III, and IV, schwannomas, metastastic brain tumors, inflammatory samples, and non-neoplastic controls. We identified 103 potential tumor-specific markers of which 20 were high-grade astrocytoma-specific. These investigations allowed us to identify a spectrum of signature proteins that could be used to distinguish CSF derived from control patients versus those with low- (AII) or high-grade (AIV) astrocytoma. These proteins may represent new diagnostic, prognostic, and disease follow-up markers when used alone or in combination. These candidate biomarkers may also have functional properties that play a critical role in the development and malignant progression of human astrocytomas, thus possibly representing novel therapeutic targets for this highly lethal disease.  相似文献   

13.
In this exploratory neuroimaging-proteomic study, we aimed to identify CSF proteins associated with AD and test their prognostic ability for disease classification and MCI to AD conversion prediction. Our study sample consisted of 295 subjects with CSF multi-analyte panel data and MRI at baseline downloaded from ADNI. Firstly, we tested the statistical effects of CSF proteins (n = 83) to measures of brain atrophy, CSF biomarkers, ApoE genotype and cognitive decline. We found that several proteins (primarily CgA and FABP) were related to either brain atrophy or CSF biomarkers. In relation to ApoE genotype, a unique biochemical profile characterised by low CSF levels of Apo E was evident in ε4 carriers compared to ε3 carriers. In an exploratory analysis, 3/83 proteins (SGOT, MCP-1, IL6r) were also found to be mildly associated with cognitive decline in MCI subjects over a 4-year period. Future studies are warranted to establish the validity of these proteins as prognostic factors for cognitive decline. For disease classification, a subset of proteins (n = 24) combined with MRI measurements and CSF biomarkers achieved an accuracy of 95.1% (Sensitivity 87.7%; Specificity 94.3%; AUC 0.95) and accurately detected 94.1% of MCI subjects progressing to AD at 12 months. The subset of proteins included FABP, CgA, MMP-2, and PPP as strong predictors in the model. Our findings suggest that the marker of panel of proteins identified here may be important candidates for improving the earlier detection of AD. Further targeted proteomic and longitudinal studies would be required to validate these findings with more generalisability.  相似文献   

14.
So far only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) is included in the diagnostic criteria for sporadic Creutzfeldt-Jakob disease (sCJD). However, this assay cannot be used for screening because of the high rate of false positive results in sCJD, and often negative results in variant CJD. To facilitate the differential diagnosis of CJD, we applied 2-D differential gel-electrophoresis (2-D DIGE) as a quantitative proteomic screening system for CSF proteins. We compared 36 patients suffering from sCJD with 30 patients suffering from other neurodegenerative diseases. Sample preparation was optimized in consideration of the fact that CSF is composed of blood- and brain-derived proteins, and an improved 2-D DIGE protocol was established. Using this method in combination with protein identification by MALDI-TOF-MS, several known surrogate markers of sCJD like 14-3-3 protein, neuron-specific enolase, and lactate dehydrogenase were readily identified. Moreover, a not yet identified protein with an approximate molecular mass of 85 kDa was found as marker for sCJD with high diagnostic specificity and sensitivity. We conclude that our proteomic approach is useful to differentiate CJD from other neurodegenerative diseases and expect that CSF-optimized 2-D DIGE will find broad application in the search for other brain derived proteins in CSF.  相似文献   

15.
The continuing expansion of proteomic technology has been fueled by the potential for discovering novel biomarkers that may be used for the early detection of disease. It has been proposed that human cerebrospinal fluid (CSF), which surrounds and protects the brain and spinal cord from traumatic injury, may be a valuable target for the diagnosis of a variety of conditions such as Alzheimer's disease, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson's disease. The immense complexity of biofluids, however, still requires that considerable development be made in the analytical techniques used so that comprehensive coverage of the proteins present in such samples is achieved. Using a simple separation strategy the protein complement of human ventricular cerebrospinal fluid obtained from patients with hydrocephalus was evaluated. The study resulted in the identification of over 1500 unique proteins that were found within all nine CSF samples that were analyzed. Comparison with the HUPO serum proteome database demonstrated that human ventricular CSF contains a large array of proteins that may be unique to CSF. This analysis greatly increases our knowledge of the protein content of this clinically important biofluid.  相似文献   

16.
Chen RL  Sage EA  Dunn MJ  Wait R  Preston JE 《Proteomics》2006,6(10):3170-3175
Biomarkers for neurodegenerative disorders are potentially present in cerebrospinal fluid (CSF) and can be detected using proteomic technologies. Since CSF is high in salt and low in protein, its study by proteomic methods requires appropriate sample preparation. In this study, we applied four different sample treatments to the same ovine CSF sample. Precipitation with acetone or using a 2-D Clean-Up Kit (GE Healthcare BioSciences, Little Chalfont, UK) preserved more proteins, and produced more gel spots than spin columns from Sigma and Bio-Rad. A 53-kDa spot, identified by MS/MS as transthyretin (TTR) tetramer, was not detected in samples treated with the 2-D Clean-Up Kit, though it was always present on all gels prepared using the other three methods. Western immunoblotting confirmed the low recovery of tetrameric TTR by the 2-D Clean-Up Kit and showed that the tetrameric form of TTR predominated in ovine but not in rat CSF. In one ovine CSF sample haemoglobin was found, indicating blood contamination. We conclude that acetone precipitation is a simple and efficient way to prepare ovine CSF for 2-DE. The use of the 2-D Clean-Up Kit leads to the disappearance of tetrameric TTR only from ovine CSF proteome.  相似文献   

17.
The aims of this study were to demonstrate the feasibility of centrally collecting and processing high-quality cerebrospinal fluid (CSF) samples for proteomic studies within a multi-center consortium and to identify putative biomarkers for medulloblastoma in CSF. We used 2-DE to investigate the CSF proteome from 33 children with medulloblastoma and compared it against the CSF proteome from 25 age-matched controls. Protein spots were subsequently identified by a combination of in-gel tryptic digestion and MALDI-TOF TOF MS analysis. On average, 160 protein spots were detected by 2-DE and 76 protein spots corresponding to 25 unique proteins were identified using MALDI-TOF. Levels of prostaglandin D2 synthase (PGD2S) were found to be six-fold decreased in the tumor samples versus control samples (p<0.00001). These data were further validated using ELISA. Close examination of PGD2S spots revealed the presence of complex sialylated carbohydrates at residues Asn(78) and Asn(87) . Total PGD2S levels are reduced six-fold in the CSF of children with medulloblastoma most likely representing a host response to the presence of the tumor. In addition, our results demonstrate the feasibility of performing proteomic studies on CSF samples collected from patients at multiple institutions within the consortium setting.  相似文献   

18.
Iron deficiency (ID) anemia during infancy results in long-term neurological consequences, yet the mediating mechanisms remain unclear. Infant monkeys often become naturally anemic during the first 6 months of life, presenting an opportunity to determine the effect of developmental iron deficiency. After weaning, animals were chosen randomly for supplementation with oral iron or, fed a standard commercial chow diet. The control group was never iron deficient. ID anemia was corrected by 12 months in both groups, as indicated by hematological parameters. CSF was collected for proteomic analysis at 12 months of age to assess the impact of developmental ID on the brain. The CSF proteome for both formerly iron deficient groups was similar and revealed 12 proteins with expression levels altered at least twofold. These proteins were identified by matrix assisted laser desorption ionization time-of-flight spectrometry and included prostaglandin D synthase, olfactory receptors and glial fibrillary acidic protein. Thus the proteomic analysis reveals a persistent effect of ID and provides insights into reports of disturbed sleep, hypomyelination and other behavioral alterations associated with ID. Furthermore, alterations in the CSF proteome despite normal hematologic parameters indicate that there is a hierarchical system that prioritizes repletion of red cell mass at the expense of the brain.  相似文献   

19.
In order to understand the intracellular responses in recombinant CHO (rCHO) cells producing antibody in serum-free medium (SFM) supplemented with optimized hydrolysates mixtures, yielding the highest specific growth rate (μ, SFM#S1) or the highest specific antibody productivity (q Ab, SFM#S2), differentially expressed proteins in rCHO cells are measured by two-dimensional gel electrophoresis combined with nano-LC-ESI-Q-TOF tandem MS. The comparative proteomic analysis with basal SFM without hydrolysates revealed that the addition of hydrolysate mixtures significantly altered the profiles of CHO proteome. In SFM#S1, the expression of metabolism-related proteins, cytoskeleton-associated proteins, and proliferation-related proteins was up-regulated. On the other hand, the expression of anti-proliferative proteins and pro-apoptotic protein was down-regulated. In SFM#S2, the expression of various chaperone proteins and proliferation-linked proteins was altered. 2D-Western blot analysis of differentially expressed proteins confirmed the proteomic results. Taken together, identification of differentially expressed proteins in CHO cells by a proteomic approach can provide insights into understanding the effect of hydrolysates on intracellular events and clues to find candidate genes for cell engineering to maximize the protein production in rCHO cells.  相似文献   

20.
Lipid droplet is a cellular organelle with a neutral lipid core surrounded by a phospholipid monolayer and coated with structural as well as functional proteins. The determination of these proteins, especially their functional regulations and dynamic movement on and off droplets, holds a key to resolving the biological functions of the cellular organelle. To address this, we carried out a comprehensive proteomic study that includes a complete proteomic, a phosphoprotein proteomic, and a comparative proteomic analysis using purified lipid droplets and mass spectrometry techniques. The complete proteome identified 125 proteins of which 70 proteins had not been identified on droplets of mammalian cells previously. In phosphoprotein proteomic analysis, 7 functional lipid droplet proteins were determined to be phosphorylated, including adipose differentiation related protein (ADRP/ADFP), two Rab proteins, and four lipid metabolism enzymes, including adipose triglyceride lipase (ATGL). To understand the dynamics of lipid droplets, GTP-dependent protein recruitment was analyzed by comparative proteomics. Arf1 and some of its coatomers, three other Arfs, several other small G-proteins including 3 Rabs, and several lipid synthetic enzymes were recruited from cytosol to purified droplets. Together, the present study suggests that lipid droplet is an active and dynamic cellular organelle that governs lipid homeostasis and intracellular trafficking through protein phosphorylation as well as GTP-regulated protein translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号