首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-(2-mercaptopropionyl)glycine (tiopronin) monolayer-protected silver particles were partially displaced by single-stranded oligonucleotides through ligand exchanges. The oligonucleotide-displaced particles could be hybridized with complementary fluorophore-labeled oligonucleotides. Both the oligonucleotide-displaced and hybridized particles could be aggregated by electrostatic interactions with salt in buffer solution, and the aggregates displayed enhanced luminescence from fluorophores. This result suggests the possible application of surface-enhanced fluorescence from metallic nanoparticle aggregation for DNA detection.  相似文献   

2.
Investigation into the effect of the reducing sugar of dextran on formation and stability of dextran-coated ultrasmall superparamagnetic iron oxides (USPIO) has demonstrated that reduction of the terminal reducing sugar can have a significant effect on particle size, coating stability, and magnetic properties. Four aspects of polysaccharide-coated USPIO particle synthesis were investigated: (i) the effect reduction of the terminal polysaccharide sugar has upon polysaccharide usage, particle size, stability, and magnetic susceptibility; (ii) the effect an exogenous reducing sugar can have upon particle synthesis; (iii) the effect the molecular weight of the reduced polysaccharide has on particle synthesis; and (iv) the effectiveness of reduced and native dextrans in stabilizing a preformed magnetic sol. For low molecular weight dextrans (MW 20,000 x 10(-6) cgs). Similar results were obtained with a 12 kDa pullulan. The effect of polysaccharide molecular weight on particle size was studied, wherein higher molecular weight reduced dextrans produced larger particles. The effectiveness of the reduced and native dextrans in stabilizing a preformed magnetic sol was compared. Reduced dextrans were found to be superior for stabilizing the magnetic sol. The observed effects of reduction of the terminal sugar in dextran compared with the native dextran were modeled using the Langmuir adsorption isotherm. A good fit of experimental data with this model was found.  相似文献   

3.
Noble metal nanoparticles are well known for their strong interactions with light through the resonant excitations of the collective oscillations of the conduction electrons on the particles, the so-called surface plasmon resonances. The close proximity of two nanoparticles is known to result in a red-shifted resonance wavelength peak, due to near-field coupling. We have subsequently employed this phenomenon and developed a new approach to glucose sensing, which is based on the aggregation and disassociation of 20-nm gold particles and the changes in plasmon absorption induced by the presence of glucose. High-molecular-weight dextran-coated nanoparticles are aggregated with concanavalin A (Con A), which results in a significant shift and broadening of the gold plasmon absorption. The addition of glucose competitively binds to Con A, reducing gold nanoparticle aggregation and therefore the plasmon absorption when monitored at a near-red arbitrary wavelength. We have optimized our plasmonic-type glucose nanosensors with regard to particle stability, pH effects, the dynamic range for glucose sensing, and the observation wavelength to be compatible with clinical glucose requirements and measurements. In addition, by modifying the amount of dextran or Con A used in nanoparticle fabrication, we can to some extent tune the glucose response range, which means that a single sensing platform could potentially be used to monitor microM --> mM glucose levels in many physiological fluids, such as tears, blood, and urine, where the glucose concentrations are significantly different.  相似文献   

4.
Using silver nanoparticle to enhance current response of biosensor   总被引:6,自引:0,他引:6  
In this paper, we present a simple procedure to increase the sensitivity of a glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in silver (Ag) sol was investigated for the first time. GOx was simply mixed with Ag nanoparticles and cross-linked with a polyvinyl butyral (PVB) medium by glutaraldehyde. Then a platinum electrode was coated with the mixed solution. The effects of the amount of the Ag particles used, with respect to the current response for enzyme electrodes, were studied. A set of experimental results indicate that the current response for the enzyme electrode containing hydrophobic Ag sol increased from 0.531 to 31.17 microA in the solution of 10 mmol/L beta-D glucose. The time reaching the steady-state current response reduced from 60 to 20s, three times less than those without Ag particles involved.  相似文献   

5.
The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate.  相似文献   

6.
There are numerous chemical methods published that enable protein coupling to carboxymethyl (CM) dextran. Here we have taken traditional amine coupling using N-hydroxysuccinimide (NHS) and N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and coupled an antibody fragment (scFv) to CM dextran at a very high density. Using an upgraded BIAlite from Biacore AB, more than 7000 RU of scFv was coupled to a CM dextran biosensor chip. In addition, scanning electron microscopy was performed on CM dextran biosensor chips following amine coupling of 30 nm gold anti-IgG particles. This showed that amine coupling was uniform across the biosensor chip surface. Calculations show that 7620 RU of an scFv coupled to such a surface results in a mean distance between binding sites of 8.8 nm. This equates to a packing volume of approximately 20% of the available space occupied by the antibody fragment. Comparisons made with densities of covalently coupled IgG show that a greater number of antibody fragment molecules can be coupled per unit area. This is most likely due to the smaller size of an antibody fragment (scFv), which has a volume of less than 20% of an IgG molecule. The significance of these findings is discussed.  相似文献   

7.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

8.
Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles.  相似文献   

9.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

10.
A controlled and up-scalable route for the biosynthesis of silver nanopartilces (NPs) mediated by fungal proteins of Coriolus versicolor has been undertaken for the first time. The fungus when challenged with silver nitrate solution accumulated silver NPs on its surface in 72h which could be reduced to 1h by tailoring the reaction conditions. Under alkaline conditions, the reaction was much faster and could easily proceed at room temperature even without stirring. The resulting Ag NPs displayed controllable structural and optical properties depending on the experimental parameters such as pH and reaction temperatures. The average size, morphology, and structure of particles were determined by AFM, TEM, XRD and UV/Visible absorption spectrophotometry. Fourier transform infrared study disclosed that the amino groups were bound to the particles, which was accountable for the stability of NPs. It further confirmed the presence of protein as the stabilizing and capping agent surrounding the silver NPs. Experiments were conducted both with, media in which fungus was initially harvested and that of pristine fungal mycelium alone. Under normal conditions, in the case of media extracellular synthesis took place whereby other than the fungal proteins, glucose was also responsible for the reduction. In the case of fungal mycelium, the intracellular formation of Ag NPs, could be tailored to give both intracellular and extracellular Ag NPs under alkaline conditions whereby the surface S-H groups of the fungus played a major role.  相似文献   

11.
The biological synthesis methods have been emerging as a promising new approach for production of nanoparticles due to their simplicity and non-toxicity. In the present study, spores of Bacillus athrophaeus were used to achieve the objective of developing a green synthesis method of silver nanoparticles. Enzyme assay revealed that the spores and their heat inactivated forms (microcapsules) were highly active and their enzymatic contents differed from the vegetative cells. Laccase, glucose oxidase, and alkaline phosphatase activities were detected in the dormant forms, but not in the vegetative cells. Although no nanoparticle was produced by active cells of B. athrophaeus, both spores and microcapsules were efficiently capable of reducing the silver ions (Ag+) to elemental silver (Ag0) leading to the formation of nanoparticles from silver nitrate (AgNO3). The presence of biologically synthesized silver nanoparticles was determined by obtaining broad spectra with maximum absorbance at 400 nm in UV–visible spectroscopy. The X-ray diffraction analysis pattern revealed that the nanoscale particles have crystalline nature with various topologies, as confirmed by transmission electron microscopy (TEM). The TEM micrograph showed the nanocrystal structures with dimensions ranging from 5 to 30 nm. Accordingly, the spore mixture could be employed as a factory for detoxification of heavy metals and subsequent production of nanoparticles. This research introduces an environmental friendly and cost effective biotechnological process for the extracellular synthesis of silver nanoparticles using the bacterial spores.  相似文献   

12.
This investigation displayed the good catalytic activity of silver nanoparticles (AgNPs) on the reduction of methylene blue dye. During this work, Honey was chosen for environmentally reducing and stabilizing agents for preparation of silver nanoparticles then characterized these nanoparticles by ultraviolet–visible spectroscopy (UV–Vis), functional biomolecules were confirmed by Fourier transform infrared spectroscopy (FTIR). Via transmission electron microscopy (TEM), the size and shape of silver nanoparticles revealed that the particles are spherical and monodispersed without major agglomeration, the particle size ranging from 5 to 25 nm, in addition, the largest particle density levels are 5–10 nm, ZETA Seizers studied the size distribution of the colloidal solution. UV/Vis spectrophotometer and HPLC were used to study and analyze the degradation performance of silver nanoparticles on methylene blue. The results show that 92% of methylene blue has been degraded after 72 h. additionally, several new peaks have appeared after treatment of the samples by using HPLC.  相似文献   

13.
One simple post-embedding method for combined light- and electron microscopy is presented. Different types of antigens in normal rat and mouse kidneys as well as in tissues from cases of experimental induced nephritis were stained after Lowicryl K4M embedding by an immunogold (silver) method. The (silver-enhanced) gold particles were visualized by light microscopy, e.g. bright-field (BFM)- and reflection contrast (RCM) microscopy, as well as by electron microscopy. The potentials of RCM visualization in this field were investigated, resulting in the successful detection of colloidal gold (15 nm) particles, or silver enhanced gold particles, on ultrathin sections. Furthermore, an increased detection sensitivity of RCM compared with BFM together with an increase in the sensitivity of the immunostaining by RCM visualization was found. The different ways to use RCM, alone or in combination with bright-field- or phase contrast microscopy for visualization of plastic sections varying in thickness, type of plastic and staining, are discussed.  相似文献   

14.
A monoclonal antibody solution displays an increase in low shear rate viscosity upon aggregation after prolonged incubation at 40°C. The morphology and interactions leading to the formation of the aggregates responsible for this non-Newtonian character are resolved using small-angle neutron scattering. Our data show a weak repulsive barrier before proteins aggregate reversibly, unless a favorable contact with high binding energy occurs. Two types of aggregates were identified after incubation at 40°C: oligomers with radius of gyration ∼10 nm and fractal submicrometer particles formed by a slow reaction-limited aggregation process, consistent with monomers colliding many times before finding a favorable strong interaction site. Before incubation, these antibody solutions are Newtonian liquids with no increase in low shear rate viscosity and no upturn in scattering at low wavevector, whereas aggregated solutions under the same conditions have both of these features. These results demonstrate that fractal submicrometer particles are responsible for the increase in low shear rate viscosity and low wavevector upturn in scattered intensity of aggregated antibody solutions; both are removed from aggregated samples by filtering.  相似文献   

15.
A monoclonal antibody solution displays an increase in low shear rate viscosity upon aggregation after prolonged incubation at 40°C. The morphology and interactions leading to the formation of the aggregates responsible for this non-Newtonian character are resolved using small-angle neutron scattering. Our data show a weak repulsive barrier before proteins aggregate reversibly, unless a favorable contact with high binding energy occurs. Two types of aggregates were identified after incubation at 40°C: oligomers with radius of gyration ∼10 nm and fractal submicrometer particles formed by a slow reaction-limited aggregation process, consistent with monomers colliding many times before finding a favorable strong interaction site. Before incubation, these antibody solutions are Newtonian liquids with no increase in low shear rate viscosity and no upturn in scattering at low wavevector, whereas aggregated solutions under the same conditions have both of these features. These results demonstrate that fractal submicrometer particles are responsible for the increase in low shear rate viscosity and low wavevector upturn in scattered intensity of aggregated antibody solutions; both are removed from aggregated samples by filtering.  相似文献   

16.
Summary One simple post-embedding method for combined light- and electron microscopy is presented. Different types of antigens in normal rat and mouse kidneys as well as in tissues from cases of experimental induced nephritis were stained after Lowicryl K4M embedding by an immunogold (silver) method. The (silver-enhanced) gold particles were visualized by light microscopy, e.g. bright-field (BFM)- and reflection contrast (RCM) microscopy, as well as by electron microscopy. The potentials of RCM visualization in this field were investigated, resulting in the successful detection of colloidal gold (15 nm) particles, or silver enhanced gold particles, on ultrathin sections. Furthermore, an increased detection sensitivity of RCM compared with BFM together with an increase in the sensitivity of the immunostaining by RCM visualization was found. The different ways to use RCM, alone or in combination with bright-field- or phase contrast microscopy for visualization of plastic sections varying in thickness, type of plastic and staining, are discussed.  相似文献   

17.
Ye A  Flanagan J  Singh H 《Biopolymers》2006,82(2):121-133
The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules.  相似文献   

18.
Recent studies have demonstrated that silver metallic particles can increase the quantum yield and decrease the lifetimes of nearby fluorophores. These studies are extended to double stranded DNA oligomers labeled with N,N'-(dipropyl)-tetramethylindocarbocyanine (Cy3) or N,N-(dipropyl)-tetramethylindodicarbocyanine (Cy5). The proximity to silver particles increases the apparent quantum yields and decreases the lifetimes of the double helical DNA 23-mer labeled individually with Cy3 or Cy5. The decreased lifetimes are accompanied by apparently increased photostability of the labeled oligomers near silver particles. Because of spatial averaging across the sample these results are likely to significantly underestimate the effects of silver particles on labeled DNA localized at an optimal distance from the metallic surface. These results suggest that DNA arrays fabricated on substrates with silver particles can display increased sensitivity and photostability in the analysis of gene expression.  相似文献   

19.
This study reported the synthesis of Vicenin‐2 gold nanoparticles (VN‐AuNPs) and evaluated their effect on the glucose utilization efficiency of 3T3‐L1 adipocytes. The VN‐AuNPs were characterized by microscopic, DLS and spectral analysis. The bio‐reducing efficiency of Vicenin‐2 (VN) was computed and confirmed by HPLC analysis. The stability of VN‐AuNPs in various physiological media was explored. The cytotoxicity and glucose uptake assays were performed in 3T3‐L1 adipocytes. The docking of VN with PTP1B and AMPK was also performed. The color change and UV absorption at 537 nm preliminarily confirmed the VN reduced gold nanoparticles. The VN‐AuNPs appeared as spherical particles (57 nm) and face centered cubic crystals under TEM and XRD analysis, respectively. Its zeta potential was found to be ?6.53 mV. The FT‐IR spectra of VN and its AuNPs confirmed its stability. The computed reducing potential of VN was similar to the extent of VN utilized during the synthesis of VN‐AuNPs. The VN‐AuNPs showed a remarkable stability in different physiological media. At 100 µM concentration, VN‐AuNPs displayed 78.21% cell viability. A concentration dependent increase in glucose uptake was noted in 3T3‐L1 adipocytes when incubated with VN‐AuNPs. The docking data revealed a strong interaction of VN with the binding pockets of PTP1B and AMPK. This demonstrates that the fabricated VN‐AuNPs might enhance the intracellular VN availability mediated cellular glucose utilization and this would serve as a novel nanodrug for the management of diabetes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1096–1106, 2015  相似文献   

20.
The use of just one material as reducing and capping agent during the synthesis of noble metal nanoparticles is of great interest for potential applications. This paper reports a simple method to prepare polyhedral silver nanoparticles at 80 °C using an epoxy resin (Araldite 506) as both reducing and capping agent. The formation of metal nanoparticles was investigated by Fourier-transform infrared spectroscopy, atomic force microscopy, transmission electronic microscopy, high-resolution transmission electronic microscopy and UV-vis spectroscopy. The proposed mechanism for the reduction of silver ions involves radicals as precursors of ketones and other products originated by thermo-oxidation of the resin. The nucleation of small spherical and polyhedral seeds (~7 nm) of polycrystalline silver and twin planes lead to big polyhedral silver nanoparticles of average size, 68 nm. On the other hand, the polyhedral silver nanoparticles dispersed in toluene changed to prolate-like particles, and their dispersion in dimethyl-sulphoxide and formamide originated elongated polyhedrons and concave nanostructures, respectively. These structural changes lead to unusual solvent-induced optical properties. For instance, the polyhedral nanoparticles dispersed in toluene red-shifted their surface plasmon resonance from 425 to 540 nm, in dimethyl-sulphoxide the spectrum exhibited a peak at 418 nm and a shoulder at 520 nm, and for the silver nanoparticles in formamide a broad band with maximum peak at 420 nm was observed. It is showed that the solvent/resin system works itself as structure-directing agent of silver nanoparticles. These results open the doors to achieve silver nanostructures highly sensitive to the dielectric environment, an ideal condition for applications in colorimetric sensors of molecules of biological or chemical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号