共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to facilitate interpretation of the deazaisoalloxazine system as a valid mechanistic probe of flavoenzyme catalysis, we have examined some of the fundamental chemical properties of this system. The enzymatic synthesis, on a micromole scale, of the flavin coenzyme analogues 5-deazariboflavin 5'-phosphate (deazaFMN) and 5-deazariboflavin 5'-diphosphate, 5' leads to 5'adenosine ester (deazaFAD) has been achieved. This latter synthesis is accomplished with a partially purified FAD synthetase complex (from Brevibacterium ammoniagenes), containing both phosphorylating and adenylylating activities, allowing direct conversion of the riboflavin analogue to the flavin adenine dinucleotide level. The structure of the reduced deazaflavin resulting from enzymatic and chemical reduction is established as the 1,5-dihydrodeazaflavin by proton magnetic resonance. Similarly, the C-5 position of the deazaflavins is demonstrated to be the locus for hydrogen transfer in deazaflavin redox reactions. Preparation of 1,5-dihydrodeazaflavins by sodium borohydride reduction stabilized them to autoxidation (t 1/2 approximately 40 h, 22 degrees C) although dihydrodeazaflavins are rapidly oxidized by other electron acceptors, including riboflavin, phenazine methosulfate, methylene blue, and dichlorophenolindophenol. Mixtures of oxidized and reduced deazaflavins undergo a rapid two-electron disproportionation (k = 22 M-1 S-1 0 degrees C), and oxidized deazaflavins form transient covalent adducts with nitroalkane anions at pH less than 5. Generalized methods for the synthesis of isotopically labeled flavin and deazaflavin coenzymes and their purification by adsorptive chromatography are given. 相似文献
2.
A detailed 220-MHz NMR study has been made of the conformational properties for the homodinucleotide adenylyl-3' leads to 5'-adenosine, ApA, in D2O. Unambiguous signal assignments of all proton signals were made with the aid of selectively deuterated nucleotidyl units, ApA, ApA, and D-8ApA, and complete, accurate sets of NMR parameters were derived by simulation-iteration methods. Sets of limiting chemical shifts and coupling values were also obtained for ApA and constituent monomers 3'-AMP and 5'-AMP at infinite dilution and at identical ionization states for assessment of dimerization effects. Conformational properties were evaluated quantitatively for most of the conformational bonds of ApA and these are consistent with two compact folded dynamically averaged structures, a base-stacked right helical structure, I, characterized as anti, C3'-endo, g-, w,w' (320,330 degrees), g'g', gg, C3'-endo, anti, and a more loosely base-stacked loop structure, II, with anti, C3'-endo, g-, w,w' (80 degrees, 50 degrees), g'g', gg, C3'-endo, anti orientations. Dimerization produces a number of nucleotidyl conformational changes including a shift in ribose equilibrium C2'-endo (S) in equilibrium C3'-endo (N) in favor of C3'-endo in both Ap- and -pA (60:40 vs. 35:65 in monomers), a change in glycosidic torsion angle chiCN toward 0 degrees, and a greater locking-in of rotamers along bonds involved in the phosphodiester backbone. Moreover, there is clear evidence that the transitions from S leads to N forms and chiCN leads to 0 degrees are directly related to base stacking in ApA. Finally, ApA exists in solution as an equilibrium between I, II and an unstacked form(s) with as yet undetermined conformational features. Since C4'-C5', C5'-O5', and C3'-O3' bonds possess exceptional conformational stabilities, it is proposed that destacking occurs primarily by rotation about P-O5' and/or O3'-P. Predominant factors influencing the overall ApA conformation are thus base-base interaction and flexibility about P-O5' and O3'-P, with change of ribose conformation occurring in consequence of an alteration of chiCN, the latter in turn being governed by the need for maximum eta overlap of stacked adenine rings. 相似文献
3.
As a first part of the ab initio study of the reaction mechanism of ribonuclease A with cytidyl-3',5'-adenosine, the geometry of the cytidyl-3',5'-adenosine substrate has been optimized using the Hartree-Fock method. Eleven different starting structures of cytidyl-3',5'-adenosine have been studied. To guarantee a proper alignment with the active site of the ribonuclease A enzyme, a part of the substrate was fixed during the geometry optimization. The geometry and intramolecular interactions of the refined conformations have been evaluated and two possible prototype structures have been proposed. One of these prototypes is more in accordance with the results of a molecular dynamics simulation and is therefore presented as a model for the geometry of cytidyl-3', 5'-adenosine in the initial step of the reaction with ribonuclease A. 相似文献
4.
Cyclic 3', 5'-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium. 总被引:1,自引:7,他引:1 下载免费PDF全文
Positive selection procedures for mutants of Salmonella typhimurium lacking cyclic 3', 5'7-adenosine monophosphate (cAMP) phosphodiesterase have been devised. The gene (cpd) coding for this enzyme has been located on the chromosome and shown to be 25% co-transducible with metC using phage P22. The mutants have been used to investigate the role of the enzyme in the control of genes whose expression is known to be dependent on cAMP. Significant alterations in the regulation of some but not others of these genes have been observed in these mutants. Mutants lacking the cAMP phosphodiesterase are more sensitive than their parents to a variety of antibiotics that appear to enter the cell through cAMP-dependent transport systems. They grow faster than the wild type on succinate-ammonia-salts, and glucose-proline-salts media and are inhibited by added cAMP on glucose, citrate, or glycerol-ammonia salts media whereas the wild type is unaffected. Neither the growth of Salmonella typhimurium on glycerol or citrate media nor the level of acid hexose phosphatase in the strain is affected by the loss of cAMP phosphodiesterase. In addition, the mutant strains are extremely sensitive to high levels of cAMP. Loss of the cAMP phosphodiesterase in strains unable to synthesize cAMP (adenyl cyclase negative) reduces by 10-fold the requirement for exogenous cAMP for expression of catabolite-sensitive phenotypes. These results suggest that through its control of cAMP levels in the cell the phosphodiesterase may be involved in the regulation of certain classes of catabolite-sensitive operaons and also in protecting the cell against high levels of cAMP. 相似文献
5.
6.
The protein kinase family is a prime target for therapeutic agents, since unregulated protein kinase activities are linked to myriad diseases. Balanol, a fungal metabolite consisting of four rings, potently inhibits Ser/Thr protein kinases and can be modified to yield potent inhibitors that are selective-characteristics of a desirable pharmaceutical compound. Here, we characterize three balanol analogues that inhibit cyclic 3',5'-adenosine monophosphate-dependent protein kinase (PKA) more specifically and potently than calcium- and phospholipid-dependent protein kinase (PKC). Correlation of thermostability and inhibition potency suggests that better inhibitors confer enhanced protection against thermal denaturation. Crystal structures of the PKA catalytic (C) subunit complexed to each analogue show the Gly-rich loop stabilized in an "intermediate" conformation, disengaged from important phosphoryl transfer residues. An analogue that perturbs the PKA C-terminal tail has slightly weaker inhibition potency. The malleability of the PKA C subunit is illustrated by active site residues that adopt alternate rotamers depending on the ligand bound. On the basis of sequence homology to PKA, a preliminary model of the PKC active site is described. The balanol analogues serve to test the model and to highlight differences in the active site local environment of PKA and PKC. The PKA C subunit appears to tolerate balanol analogues with D-ring modifications; PKC does not. We attribute this difference in preference to the variable B helix and C-terminal tail. By understanding the details of ligand binding, more specific and potent inhibitors may be designed that differentiate among closely related AGC protein kinase family members. 相似文献
7.
Two new fluorescent nucleotide photoaffinity labels, 3'(2')-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate (Bz2 epsilon ADP) and 2'-deoxy-3'-O-(4-benzoylbenzoyl)-1,N6-ethenoadenosine 5'-diphosphate [3'(Bz2)2'd epsilon ADP], have been synthesized and used as probes of the ATP binding site of myosin subfragment 1 (SF1). These analogues are stably trapped by the bifunctional thiol cross-linker N,N'-p-phenylenedimaleimide (pPDM) at the active site in a manner similar to that of ATP [Wells, J.A., & Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970], and nonspecific photolabeling can be minimized by removing free probe by gel filtration prior to irradiation. Both probes covalently photoincorporate with high efficiency (40-50%) into the central 50-kDa heavy chain tryptic peptide, as found previously for the nonfluorescent parent compound 3'(2')-O-(4-benzoylbenzoyl)adenosine diphosphate [Mahmood, R., & Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959]. The solution conformations of Bz2 epsilon ADP and 3'(Bz2)-2'd epsilon ADP were analyzed by steady-state and time-resolved fluorescence spectroscopy. These data indicated that the benzoylbenzoyl rings in both analogues were stacked over the epsilon-adenine ring. The degree of stacking was greater with the 2' isomer than with the 3' isomer. Fluorescence quantum yields and lifetimes were measured for Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP reversibly bound, stably trapped, and covalently photoincorporated at the active site of SF1. These values were compared with those for 3'(2')-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6-ethenoadenos ine diphosphate (CBH epsilon ADP) and 2'-deoxy-3'-O-[[(phenylhydroxymethyl)phenyl]carbonyl]-1,N6- ethenoadenosine diphosphate [3'(CBH)2'd epsilon ADP]. These derivatives were synthesized as fluorescent analogues of the expected product of the photochemical reactions of Bz2 epsilon ADP and 3'(Bz2)2'd epsilon ADP, respectively, with the active site of SF1. The fluorescence properties of the carboxybenzhydrol derivatives trapped at the active site by pPDM were compared with those of the Bz2 nucleotide-SF1 complexes. These properties were consistent with a photoincorporation mechanism in which the carbonyl of benzophenone was converted to a tertiary alcohol attached covalently to the protein. The specific, highly efficient photoincorporation of Bz2 epsilon ADP at the active site will allow it to be used as a donor in distance measurements by fluorescence resonance energy transfer to acceptor sites on actin. 相似文献
8.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function. 相似文献
9.
10.
The interaction of guanosine 5'-diphosphate, 2' (3')-diphosphate with the bacterial elongation factor Tu 总被引:6,自引:0,他引:6
The unusual nucleotide guanosine tetraphosphate, ppGpp, which appears following amino acid starvation in “stringent” strains of bacteria binds to the elongation factor EFTu with a dissociation constant of about 8 × 10?9m. ppGpp binds competitively with GDP and GTP, and EFTs catalyzes the exchange reaction of ppGpp with EFTu · GDP. ppGpp binds to EFTu about 50 times more tightly than does GTP, and, in the absence of elongation factor EFTs, it will effectively inhibit the formation of the ternary complex Phe-tRNA · EFTu · GTP. However, in the presence of EFTs there is rapid equilibration between EFTu · GTP and EFTu · ppGpp which allows EFTu to be rapidly and extensively incorporated into the stable ternary complex. A preliminary estimate of the constant for the dissociation of Phe-tRNA from the ternary complex is 10?810?9m. ppGpp inhibits the enzymatic binding of Phe-tRNA to ribosomes; however, EFTs reverses this inhibition. ppGpp moderately inhibits phenylalanine polymerization even in the presence of EFTs. This inhibition probably involves an interaction of ppGpp with elongation factor G, the translocation factor. It appears that in the intact cell ppGpp would not be an effective inhibitor of EFTu, and that little EFTu · ppGpp can exist in the cell. 相似文献
11.
J J Moore M A Suster R M Moore 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1988,189(1):84-93
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins. 相似文献
12.
The net synthesis of cAMP by an adenine auxotroph of was measured by assaying the incorporation of tritium from [3H]-adenine into cyclic [3H] AMP during exponential growth. Synthesis of cAMP ceased abruptly when glucose was added to cells growing in glycerol and then recovered to an intermediate rate of synthesis after 0.5–1.0 generation. Cyclic AMP appeared to be synthesized from a precursor pool that turned over more rapidly than total cellular ATP. The rates of cAMP synthesis measured by this technique are compatible with the cellular levels of cAMP previously measured in this strain(3). 相似文献
13.
Two enzyme activities which release nucleotides preferentially from the 5' termini of DNA were found in T4-infected Escherichia coli. Since no corresponding activities were found in uninfected cells, the activities appeared to be induced by T4. Both activities are capable of excising pyrimidine dimers from ultraviolet-irradiated DNA which has been treated with T4 endonuclease V. One of the activities , referred to as T4 exonuclease B, was purified 400-fold from an extract of T4v 1- infected cells. The enzyme initiates hydrolysis of DNA specifically at the 5' termini to yield products which are mainly oligonucleotides of varying length. The hydrolysis reaction proceeds in a limited manner. The enzyme shows optimal activity at pH 7.0 and absolutely requires Mg2+. The molecular weight of the enzyme , as estimated by gel filtration, is approximately 35,000. Another activity, referred to as T4 exonuclease C, was purified 240-fold from the extract. This activity also excises pyrimidine dimers from ultraviolet-irradiated, incised DNA and releases nucleotides at 5' termini. It has a pH optimum at 7.5 and requires Mg2+. The molecular weight of the enzyme is approximately 20,000. 相似文献
14.
H Cramer R Hammers P Maier H Schindler 《Biochemical and biophysical research communications》1978,84(4):1031-1037
Cholera toxin was found to induce high accumulations of cyclic AMP in the isolated choroid plexus of the rabbit and in the incubation medium. The accumulation showed a characteristic lag phase of at least 30 min and continued for at least 3 hours. Inactivated cholera toxin was unable to increase cyclic AMP levels. There was only a moderate effect of cholera toxin on cyclic AMP “low Km” phosphodiesterase activity in homogenates. The effect of cholera toxin on cyclic AMP levels confirms the existance of a potent cyclic AMP generating system in the choroid plexus which is activated also by β-adrenergic agonists, histamine and prostaglandin E1. 相似文献
15.
16.
17.
The substrate specificity of the interferon-induced mouse L-cell enzyme, 2',5'-oligoadenylate synthetase, was determined with a number of nucleoside 5'-triphosphate analogues. Selected nucleoside 5'-triphosphates were converted to 2',5'-oligonucleotides with the following order of efficiency for the nucleoside: 8-azaadenosine greater than adenosine = 2-chloroadenosine greater than sangivamycin greater than toyocamycin greater than formycin greater than 3-ribosyladenine greater than ribavirin greater than tubercidin greater than adenosine 1-oxide greater than 2-beta-D-ribofuranosylthiazole-4-carboxamide greater than inosine = 1,N6-ethenoadenosine greater than guanosine greater than 8-bromoadenosine = uridine greater than cytidine. Adenosine 5'-((beta, gamma-imidotriphosphate) did not seem to be a recognizable substrate since no detectable product resulted. Either the 2',5'-oligoadenylate synthetase is not as specific as had been previously thought, or there may be more than one 2',5'-oligonucleotide synthetase. The 2',5'-oligonucleotide analogue products in which the adenosine of ppp(A2'P5')nA was replaced by the various nucleoside analogues were separated by DEAE-cellulose column chromatography and the chain length and number of 5'-phosphate residues analyzed by a rapid, efficient high-performance liquid chromatographic (HPLC) system involving ion-pairing C18 reversed-phase column chromatography. Separation of the 5'-mono-, 5'-di-, and 5'-triphosphorylated forms of the 2',5'-oligonucleotide analogue dimers, trimers, tetramers, and pentamers was readily achieved by this useful HPLC system. No 5'-nonphosphorylated forms were detected for any of the 2',5'-oligonucleotide analogue products. 相似文献
18.
The effect of 5'-AMP and cyclic 3',5'-AMP on the ability of cells--precursors of bone marrow to form colonies of fibroblast-like cells in vitro was studied in the guinea pig. No reliable effect of both substances (within the limits of 10(-5) to 10(-8) M) on the formation of fibroblast colonies in vitro by the cells--precursors of bone marrow was shown. No differences were established in the size of colonies between the experimental and control variants. 相似文献
19.
cAMP-binding protein was isolated from the plaque agent and purified to the homogeneous state. Purification process included filtration of the initial preparation through the membrane able to transmit particles with mol. weight to 300,000 Da, chromatography on cellulose "DE-52" and biogel HTP. The protein homogeneity was confirmed by electrophoresis in polyacrylamide gel and precipitation with commercial plague agglutinating serum. The protein with mol. weight of 180,000 Da consisted of two identical subunits (90,000 Da. each) which could dissociate with formation of monomers (mol. weight approximately 18,000 Da), Cu2+, Co2+, Mn2+ ions stimulated activity of cAMP-binding protein of a plague microbe while Fe3+, Ca2+, Zn2+ ions inhibited it by 30-70%. A monospecific rabbit serum to the homogeneous preparation of cAMP-binding protein was obtained. It helped finding the similar protein in the close relative bacterium Yersinia pseudotuberculosis but not in Y. enterocolitica. 相似文献
20.
Cyclic 3',5'-adenosine monophosphate and sodium dibutyryl cyclic3',5'-adenosine monophosphate had no effect on sporulation ofSaccharomyces cerevisiae, when added to a sporulation mediumnot enriched with glucose. They did, however, reverse the repressionof sporulation by glucose, when added to the sporulation mediumtogether with glucose. 5'-AMP, 5'-ADP and 5'-ATP did not reversethe repression of sporulation by glucose. (Received February 24, 1972; ) 相似文献