首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extension growth of secondary needles is under photoperiodic control in Pinus sylvestris . To test for the effects of far-red light on maintaining this extension growth, seedlings of six populations originating from latitudes between 57° and 67°N were raised for 11 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred at the same temperature to a daily regime of 8 h incandescent light (230 µmol m−2 s−1) followed by a 16 h day extension with cool white fluorescent light (40 µmol m−2 s−1, R/FR ratio 7.5) or with incandescent lamps (20 µmol m−2 s−1, R/FR ratio 2.0). For the seedlings from the three populations north of 64°, needle extension growth over 42 days in the FR-poor day extension treatment was lower by up to 40% than in the FR-rich day extension treatment, whereas for the seedlings from the three southern populations the needle extension growth was similar in both day extension treatments. The requirement for FR in day extensions is characteristic of 'light-dominant' photoperiodic control mechanisms. It appears that P. sylvestris changes from dark-dominant night timekeeping to light-dominant day timekeeping with increasing latitude, as with the photoperiodic control of budset in Picea abies .  相似文献   

2.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

3.
The effects of high salinity (up to 400 m M NaCl) on photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle were investigated in the halophyte Artimisia anethifolia grown under outdoor conditions. In order to examine the changes in PSII photochemistry, photoinhibition, thermal dissipation associated with the xanthophyll cycle in salt-acclimated plants, the experiments were conducted at midday on a clear day (maximal irradiance 1500 μmol m−1 s−1) and on a cloudy day (maximal irradiance 700 μmol m−1 s−1), respectively. With increasing salt concentration, the accumulation of sodium and chloride in leaves increased considerably while the relative growth rate and CO2 assimilation rate decreased significantly. Salinity induced no effects on PSII photochemistry, thermal energy dissipation, and the contents of the xanthophyll cycle pigments either on a clear day or on a cloudy day. However, when compared with those on a cloudy day, PSII photochemistry decreased and thermal energy dissipation increased significantly in both control and salt-acclimated plants on a clear day. The levels of zeaxanthin and antheraxanthin at the expense of violaxanthin were higher on a clear day than on a cloudy day. The results suggest that photoinhibition and the xanthophyll cycle were not induced by high salinity but by high light only in A. anethifolia plants. The results also suggest that A. anethifolia showed high resistance not only to high salinity, but also to photoinhibition even when it was treated with high salinity and exposed to full sunlight.  相似文献   

4.
We present field observations of carbon isotope discrimination (Δ) and internal conductance of CO2 ( g i) collected using tunable diode laser spectroscopy (TDL). Δ ranged from 12.0 to 27.4‰ over diurnal periods with daily means from 16.3 ± 0.2‰ during drought to 19.0 ± 0.5‰ during monsoon conditions. We observed a large range in g i, with most estimates between 0.04 and 4.0  µ mol m−2 s−1 Pa−1. We tested the comprehensive Farquhar, O'Leary and Berry model of Δ (Δcomp), a simplified form of Δcompsimple) and a recently suggested amendment (Δrevised). Sensitivity analyses demonstrated that varying g i had a substantial effect on Δcomp, resulting in mean differences between observed Δ (Δobs) and Δcomp ranging from 0.04 to 9.6‰. First-order regressions adequately described the relationship between Δ and the ratio of substomatal to atmospheric CO2 partial pressure ( p i/ p a) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Δobs on different days. In June, Δsimple outperformed Δcomp and Δrevised, but incorporating g i and all non-photosynthetic fractionations improved model predictions in July and August.  相似文献   

5.
Changes in the extent of P700 oxidation (P700+) were investigated after chilling of barley, rice, pumpkin, and cucumber leaf segments at 4°C for 1 h under light with various photon flux densities. At 50 µmol photons m−2 s−1, the decrease in P700+ was observed only in cucumber, but at 150 µmol photons m−2 s−1, it was found in all plants except barley, revealing their expected chilling sensitivities. However, the decrease in P700+ by this short-term chilling was reversible in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or methyl viologen, and it did not show any causal relationship with the decrease in the electron transfer rate nor with the down-regulation of photosystem II through the accumulation of zeaxanthin and the development of non-photochemical quenching. These results led to the suggestion that photosystem I (PSI) acceptor side limitation is a prerequisite for the decrease of P700+. Furthermore, PSI acceptor side limitation could be mainly due to limitation of electron-sink pathways such as CO2 assimilation and ascorbate–glutathione cycle, because treatment with glycolaldehyde which inhibits the former pathway, and with KCN which inhibits both pathways, decreased P700+ by 20–30% in barley leaves after chilling in the light.  相似文献   

6.
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1–2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from −18 to −12 nmol m−2 s−1) and K+ uptake (∼2 nmol m−2 s−1) reverted to efflux (∼−3 nmol m−2 s−1). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a ∼3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 m m NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (−50 nmol m−2 s−1). Kinetin (2–4  µ m ), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.  相似文献   

7.
The rate coefficient of repair of photosystem II after photoinactivation   总被引:1,自引:1,他引:0  
During photosynthesis, photoinactivation and repair of photosystem II (PSII) occur simultaneously, resulting in a net loss of functional PSII under a given irradiance. This study determines the rate coefficients for the partial processes, allowing the calculation of the partial rates at any concentration of functional/non-functional PSII. The rate coefficient of photoinactivation was obtained from the onset of photoinactivation of PSII in leaf segments of Capsicum annuum L. in the absence of repair, and was in turn used to obtain the rate coefficient ( k r) of repair of PSII when repair was occurring. The value of k r was found to be near maximum at an irradiance as low as 29 µmol photons m−2 s−1 and peaked at or somewhat above the growth irradiance; however, it declined on further increasing the irradiance, possibly due to oxidative stress. The value of k r was considerably decreased by elevating the CO2 to about 1%, particularly at low irradiance, probably due to acidification of the stroma to a pH outside the range that is optimal for protein synthesis. The method of determining k r is convenient to apply, not relying on radiolabelling and pulse-chase experiments.  相似文献   

8.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

9.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

10.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

11.
SUMMARY. Diel vertical migrations of a dinoflagellate, Ceratium hirundinella , were induced in a laboratory tube (1.63 × 0.15 m) under a light-dark cycle. The timing of vertical migrations differed between cultures in the exponential and stationary phases of growth; the latter showed a greater coincidence with the light regime.
Migration of cells into the surface layers occurred at low values of surface irradiance (<550 μeinsteins m−2 s−1). At irradiances more closely approaching summer sunshine (> 1300 μE m−2 s−1) there was a marked avoidance of surface waters, and population maxima were found at depths associated with a relative irradiance level of 10% or c. 150 μE m−2 s−1). Thermal stratification restricted downward movement of cells into the cooler layers. The combination of high surface irradiance and thermal stratification resulted in large, stable, sub-surface maxima of Ceratium , similar to those observed in natural waters under comparable environmental conditions.  相似文献   

12.
The objective of the present study was to determine the influence of reduced irradiance on the activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and respiratory enzymes. Rooted cuttings of the tropical epiphyte. Ficus benjamina L., were grown in a shaded environment that excluded approximately 50% of the natural photosynthetically active irradiance (890 μmol m−2 s−1) for 4 months. Established plants were transferred and grown for 10 months under a range of irradiance levels with daily average maxima varying from a full-sun environment to 20% full sun (100%−1735; 50%−890; 40%−695; and 20%−303 μmol m−2s−1). Chlorophyll, carotenoid and soluble protein content increased in Ficus leaves as irradiance level decreased, while Rubisco increased on a fresh weight basis but decreased on a protein basis. Glycolytic enzymes, enolase and pyruvate kinase, showed higher activities in full-sun plants on a protein and fresh weight basis. However, the activity of two mitochondrial enzymes, aconitase and malate dehydrogenase, was not different under the various irradiance levels. When transferred to a very low irradiance environment (18 μmol m−2 s−1), mature leaves exhibited increased chlorophyll and carotenoid levels regardless of previous irradiance treatment. Exposure to very low irradiance resulted in a large increase in enolase and pyruvate kinase activities. Only plants grown under full sun conditions showed a decline in Rubisco activity following growth at very low irradiance. Together, these studies demonstrate the ability of mature leaves of Ficus to biochemically adjust photosynthetic and respiratory components over a wide range of irradiance.  相似文献   

13.
Laboratory experiments with Pacific halibut Hippoglossus stenolepis revealed that hunger level had a significant effect on the first detection of bait, the number of baits located and attacked, the time required to locate and attack baits and handling times. In all cases, feeding motivation and efficiency increased with hunger. Light level influenced general locomotory activity and location and attacks on baits, but not detection or handling times. The effect of light was interactive with fish hunger level. Hungry fish could locate and consume baits in all light levels, ranging from daylight conditions to near darkness (10−8 µmoles photons m−2 s−1), but location, attack and handling times were all significantly elevated in low light conditions, and attack rates were significantly reduced. In the dark, only 50% of the baits were located and only 17% were attacked. Performance metrics were relatively similar among three higher light treatments (10−5, 10−3 and 10−1 µmoles photons m−2 s−1) where bait location and attack were more efficient. Active space and effective area associated with baited fishing gear will vary because hunger and light levels affect variation in bait detection, locomotion and feeding behaviour. Consequently, fishing activity and stock assessments that depend upon bait may be compromised by spatial and temporal variation in prey abundance, time of day, season, depth and other environmental variables that influence feeding motivation and efficiency.  相似文献   

14.
Inflorescences of arum lilies have a three-part spadix with a scent-producing, sterile appendix above two bands of fertile male and female florets. The appendix and male florets are thermogenic, but with different temporal patterns. Heat-production was measured in Arum concinnatum , A. creticum and A. idaeum . The male florets of A. concinnatum showed a 3 d continuous episode of thermogenesis with three waves, and the appendix warmed in a single, 6 h episode. Maximum fresh-mass-specific CO2 production rate was 0.17  µ mol s−1 g−1 to achieve a 10.9 °C temperature elevation by the appendix, and 0.92  µ mol s−1 g−1 to achieve a 4.8 °C elevation by male florets. Reversible, physiological temperature regulation was not evident in either tissue. Respiration increased with tissue temperatures with Q10 values of 1.8–3.9, rather than less than 1.0 as occurs in thermoregulatory flowers. Experimental step changes in temperature of appendix and male floret tissues also failed to show thermoregulatory responses. The patterns of thermogenesis therefore appear to be fixed by the temporal sequence of blooming. Thermogenesis in the alpine species, A. creticum and A. idaeum , was significantly lower than in the lowland A. concinnatum , possibly related to difficulty in raising floral temperature in their cold and windy habitat.  相似文献   

15.
Photosystem II (PSII) activity was examsined in leaves of chilling-sensitive cucumber ( Cucumis sativus L.), tomato ( Lycopersicum esculentum L.), and maize ( Zea mays L.), and in chilling-tolerant barley ( Hordeum vulgare L.) illuminated with moderate white light (300 µmol m−2 s−1) at 4°C using chlorophyll a fluorescence measurements. PSII activity was inhibited in leaves of all the four plants as suggested by the decline in F v/ F m, 1/ F o − 1/ F m, and F v/ F o values. The changes in initial fluorescence level ( F o), F v/ F m, 1/ F o − /1/ F m, and F v/ F o ratios indicate a stronger PSII inhibition in cucumber, maize and tomato plants. The kinetics of chlorophyll a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by photoinhibition. The selective suppression of the J-I phase of fluorescence rise kinetics provides evidence for weakened electron donation from the oxidizing side, whereas the accumulation of reduced QA suggests damage to the acceptor side of PSII. These findings imply that the process of chilling-induced photoinhibition involves damage to more than one site in the PSII complexes. Furthermore, comparative analyses of the decline in F v/ F o and photooxidation of P700 explicitly show that the extent of photoinhibitory damage to PSII and photosystem I is similar in leaves of cucumber plants grown at a low irradiance level.  相似文献   

16.
In flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species. Fluorescence microscopy was used to determine the presence of chloroplasts within cells of aquatic roots. Net O2 production by excised aquatic roots, when underwater, was measured with varying light and CO2 regimes; the apparent maximum capacity ( P max) for underwater net photosynthesis in aquatic roots was 0.45  µ mol O2 m−2 s−1. The photosynthetic potential of these roots was supported by the immunolocalization of PsbA, the major protein of photosystem II, and ribulose-1-5-bisphosphate carboxylase/oxygenase (Rubisco) in root protein extracts. Chlorophyllous aquatic roots of T. pergranulata are photosynthetically active, and such activity is a previously unrecognized source of O2, and potentially carbohydrates, in flooded and submerged plants.  相似文献   

17.
1. Some characteristics of the photosynthesis and primary production of benthic and planktonic algal communities were investigated in a littoral zone covered with gravel in the north basin of Lake Biwa, paying special attention to the recent development of filamentous green algae (FGA) in the benthic algal community.
2. Pmax (maximum gross photosynthesis rate) values of the benthic algal community (0.1–1.2 mg C mg chl. a −1 h−1) obtained from photosynthesis–irradiance (P–I) curves were lower than those of the planktonic algal community (2.4–11.5 mg C mg chl. a −1 h−1). This is apparently a result of the high degree of self shading in the benthic algal community and its low turnover as compared with that of the planktonic algal community.
3. Relatively high Ik values (150–200 μmol photon m−2 s−1) were observed in the benthic algal community only in June–July when a FGA, Spirogyra sp., was abundant. This reflected a photosynthetic characteristic of the Spirogyra itself, in which photosynthesis was saturated at high light intensity.
4. The FGA community established in the layer between planktonic and sessile (benthic algae except for FGA) algal communities. It brought about extraordinarily high organic matter production in the littoral zone at the expense of production in the sessile algal community.  相似文献   

18.
Onions were grown in environmentally controlled growth chambers for 85 days to investigate the effect of relatively low light intensity (350 µmol m−2 s−1) at two different total irradiance periods (12-h and 24-h photoperiods) on growth and photosynthetic performance. To test whether photosynthetic downregulation occurred due to carbohydrate feedback, we used onions that differed in bulb-forming capacity. Allium fistulosum (L. cv. 'Kinka') is a non-bulbing onion, with potentially limited carbohydrate storage capacity, while Allium cepa (L. cv. 'Cal 296') is a bulb-forming onion with possibly greater carbohydrate storage capacity. In A . fistulosum , photosynthetic downregulation was observed in 24-h plants as indicated by reductions in the light- and CO2-saturated photosynthetic capacity ( A sat and A max, respectively) by 26%, reduced maximum rate of carboxylation ( V cmax) by ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) by 33%, reduced maximum rate of electron transport ( J max) by 27% and 3-fold higher foliar sugar concentration. In contrast, the photosynthetic and biochemical capacity of A . cepa was not affected by exposure to 24-h photoperiod, presumably because substantial amounts of foliar carbohydrates were re-allocated to bulbs. In 24-h A . cepa , up to 84% of total plant mass was allocated to bulbs, while in 12-h plants, more mass was allocated to leaves. Production of greater leaf area in 12-h plants compared with 24-h plants compensated for lower total daily irradiance such that 12-h and 24-h plants of both species exhibited similar daily total leaf net CO2 exchange and plant mass at the end of the experiment.  相似文献   

19.
Spirogyra Link (1820) is an anabranched filamentous green alga that forms free-floating mats in shallow waters. It occurs widely in static waters such as ponds and ditches, sheltered littoral areas of lakes, and stow-flowing streams. Field observations of its seasonal distribution suggest that the 70-μm-wide filament form of Spirogyra should have a cool temperature and high irradiance optimum for net photosynthesis. Measurements of net photosynthesis and respiration were marie at 58 combinations of tight and temperature in a controlled environment facility. Optimum conditions were 25°C and 1500 μmol photons m−2 s−1, at which net photosynthesis averaged 75.7 mg O2 gdm−1 h−1. Net photosynthesis was positive at temperatures from 5° to 35°C at most irradiances except at combinations of extremely low irradiances and high temperatures (7 and 23 μmol photons m−2 s−1 at 30°C and 7, 23, and 35 μmol photons m−2 s−1 at 35°C). Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiances of 750 μmol photons m−2 s−1 or greater. Polynomials were fitted to the data to generate response surfaces; such response surfaces can be used to represent net photosynthesis and respiration in ecological models. The data indicate that the alga can tolerate the cool water and high irradiances characteristic of early spring but cannot maintain positive net photosynthesis under conditions of high temperature and low light (e.g. when exposed to self-shading ).  相似文献   

20.
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 ± 0.2  µ mol CO2 m−2 s−1, and ecosystem respiration was 9.4 ± 0.5  µ mol CO2 m−2 s−1[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号