首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Few studies of lipid rafts have investigated gangliosides in brain tissue. This study focus on analyses of lipids and the major brain gangliosides (GM1, GD1a, GD1b, GT1b) in human cortex (frontal, temporal) and corresponding detergent resistant membranes (DRMs), i.e. rafts. A high proportion of the gangliosides (18–26%) as well as of cholesterol (21%) and sphingomyelin (38%) was found in rafts, while lower yields was observed for ganglioside GM2 (9%), phospholipids (8%) and in particular proteins (2%). Significant alterations in lipid composition was noticed in rafts from Alzheimer brain tissue. These results show that sphingolipids and cholesterol are major constituents of rafts also in the human brain and that the main brain gangliosides are distributed in rafts to a similar degree. Moreover, lipid rafts might be considered in the pathology of Alzheimer's disease.  相似文献   

2.
Increasing evidence supports the idea that the initial events of Aβ oligomerization and cytotoxicity in Alzheimer's disease involve the interaction of amyloid Aβ-derived diffusible ligands (ADDLs) with the cell membrane. This also indicates lipid rafts, ordered membrane microdomains enriched in cholesterol, sphingolipids and gangliosides, as likely primary interaction sites of ADDLs. To shed further light on the relation between ADDL-cell membrane interaction and oligomer cytotoxicity, we investigated the dependence of ADDLs binding to lipid rafts on membrane cholesterol content in human SH-SY5Y neuroblastoma cells. Confocal laser microscopy showed that Aβ1-42 oligomers markedly interact with membrane rafts and that a moderate enrichment of membrane cholesterol prevents their association with the monosialoganglioside GM1. Moreover, anisotropy fluorescence measurements of flotillin-1-positive rafts purified by sucrose density gradient suggested that the content of membrane cholesterol and membrane perturbation by ADDLs are inversely correlated. Finally, contact mode atomic force microscope images of lipid rafts in liquid showed that ADDLs induce changes in raft morphology with the appearance of large cavities whose size and depth were significantly reduced in similarly treated cholesterol-enriched rafts. Our data suggest that cholesterol reduces amyloid-induced membrane modifications at the lipid raft level by altering raft physicochemical features.  相似文献   

3.
Few studies of lipid rafts have investigated gangliosides in brain tissue. This study focus on analyses of lipids and the major brain gangliosides (GM1, GD1a, GD1b, GT1b) in human cortex (frontal, temporal) and corresponding detergent resistant membranes (DRMs), i.e. rafts. A high proportion of the gangliosides (18–26%) as well as of cholesterol (21%) and sphingomyelin (38%) was found in rafts, while lower yields was observed for ganglioside GM2 (9%), phospholipids (8%) and in particular proteins (2%). Significant alterations in lipid composition was noticed in rafts from Alzheimer brain tissue. These results show that sphingolipids and cholesterol are major constituents of rafts also in the human brain and that the main brain gangliosides are distributed in rafts to a similar degree. Moreover, lipid rafts might be considered in the pathology of Alzheimer's disease.  相似文献   

4.
alpha-Synuclein exists in two different compartments in vivo-- correspondingly existing as two different forms: a membrane-bound form that is predominantly alpha-helical and a cytosolic form that is randomly structured. It has been suggested that these environmental and structural differences may play a role in aggregation propensity and development of pathological lesions observed in Parkinson's disease (PD). Such effects may be accentuated by mutations observed in familial PD kindreds. In order to test this hypothesis, wild-type and A53T mutant alpha-synuclein interactions with rat brain synaptosomal membranes were examined. Previous data has demonstrated that the A30P mutant has defective lipid binding and therefore was not examined in this study. Electron microscopy demonstrated that wild-type alpha-synuclein fibrillogenesis is accelerated in the presence of synaptosomal membranes whereas the A53T alpha-synuclein fibrillogenesis is inhibited under the same conditions. These results suggested that subtle sequence changes in alpha-synuclein could significantly alter interaction with membrane bilayers. Fluorescence and absorption spectroscopy using environment sensitive probes demonstrated variations in the inherent lipid properties in the presence and absence of alpha-synuclein. Addition of wild-type alpha-synuclein to synaptosomes did not significantly alter the membrane fluidity at either the fatty acyl chains or headgroup space, suggesting that synaptosomes have a high capacity for alpha-synuclein binding. In contrast, synaptosomal membrane fluidity was decreased by A53T alpha-synuclein binding with concomitant packing of the lipid headgroups. These results suggest that alterations in alpha-synuclein-lipid interactions may contribute to physiological changes detected in early onset PD.  相似文献   

5.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid 'rafts' and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

6.
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.  相似文献   

7.
Ganglioside-specific binding protein on rat brain membranes   总被引:6,自引:0,他引:6  
A derivative of ganglioside GT1b (IV3NeuAc,II3(NeuAc)2-GgOse4) with an active ester in its lipid portion was synthesized and covalently attached to bovine serum albumin (BSA). The conjugate, having four GT1b molecules per albumin molecule [GT1b)4BSA) was radioiodinated and used to probe rat brain membranes for ganglioside binding proteins. A ganglioside-specific, high affinity (KD = 2-4 nM), saturable (Bmax = 13-20 pmol/mg membrane protein) binding site for 125I-(GT1b)4BSA was demonstrated on detergent-solubilized rat brain membranes adsorbed to filters. 125I-(GT1b)4BSA binding was tissue-specific (more than 35-fold greater to brain than to liver membranes) and was nearly eliminated by pretreatment of brain membrane-adsorbed filters with trypsin (1 microgram/ml). Underivatized gangliosides added as mixed detergent-lipid micelles blocked 125I-(GT1b)4BSA binding to brain membranes; structurally related GQ1b, GT1b, and GD1b were the most potent (half-maximal inhibition at 70-110 nM), while half-maximal inhibition by other gangliosides (GD3, GD1a, GM3, GM2, and GM1) required 5-20-fold higher concentrations. Other sphingolipids, neutral glycosphingolipids, and glycoproteins were poor inhibitors, and treatment of (GT1b)4BSA with neuraminidase attenuated its binding. Although most phospholipids were noninhibitory, phosphatidylinositol and phosphatidylglycerol inhibited half-maximally at 400-600 nM. However, inhibition of 125I-(GT1b)4BSA binding by gangliosides was competitive and reversible while that by phosphatidylinositol and phosphatidylglycerol was not. Ganglioside-protein conjugate binding reveals ganglioside-specific brain membrane receptors.  相似文献   

8.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

9.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2006,45(10):3386-3395
Alpha-synuclein is a presynaptic protein, the A53T and A30P mutants of which are linked independently to early-onset familial Parkinson's disease. The association of wild-type alpha-synuclein with lipid membranes was characterized previously by electron spin resonance (ESR) spectroscopy with spin-labeled lipids [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926]. Here, we study the interaction of the A53T and A30P alpha-synuclein mutants and a truncated form that lacks the acidic C-terminal domain with phosphatidylglycerol bilayer membranes, using anionic phospholipid spin labels. The strength of the interaction with phosphatidylglycerol membranes lies in the order: wild type approximately truncated > A53T > A30P > fibrils approximately 0, and only the truncated form interacts with phosphatidylcholine membranes. The selectivity of the interaction of the mutant alpha-synucleins with different spin-labeled lipid species is reduced considerably, relative to the wild-type protein, whereas that of the truncated protein is increased. Polarized infrared (IR) spectroscopy is used to study the interactions of the wild-type and truncated proteins with aligned lipid membranes and additionally to characterize the fibrillar form. Wild-type alpha-synuclein is natively unfolded in solution and acquires secondary structure upon binding to membranes containing phosphatidylglycerol. Up to 30-40% of the amide I band intensity of the membrane-bound wild-type and truncated proteins is attributable to beta-sheet structure, at the surface densities used for IR spectroscopy. The remainder is alpha-helix and residual unordered structure. Fibrillar alpha-synuclein contains 62% antiparallel beta-sheet and is oriented on the substrate surface but does not interact with deposited lipid membranes. The beta-sheet secondary-structural elements of the wild-type and truncated proteins are partially oriented on the surface of membranes with which they interact.  相似文献   

10.
Interaction of full length recombinant hamster prion protein with liposomes mimicking lipid rafts or non-raft membrane regions was studied by circular dichroism, chemical cross-linking and sucrose gradient ultracentrifugation. At pH 7.0, the protein bound palmitoyloleoylphosphatidylcholine/cholesterol/sphingomyelin/monosialoganglioside GM1 (GM1) ganglioside liposomes but not palmitoyloleoylphosphatidylcholine alone (bound/free=0.33 and 0.01, respectively), maintaining the native alpha-helical structure and monomeric form. At pH 5.0, though still binding to quaternary mixtures, in particular GM1, the protein bound also to palmitoyloleoylphosphatidylcholine (bound/free 0.35) becoming unfolded and oligomeric. The pH-dependent interaction with raft or non-raft membranes might have implication in vivo, by stabilizing or destabilizing the protein.  相似文献   

11.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin. Ceramide exhibits a dramatically higher affinity for ordered lipid domains in both cholesterol-free and cholesterol-containing bilayers than do other sphingolipids. Our findings suggest that sphingolipids with a variety of headgroup structures will be enriched by substantial factors in liquid-ordered versus liquid-disordered regions of membranes, in a manner that is only modestly dependent on the nature of the polar headgroup. Ceramide is predicted to show a very strong enrichment in such domains, supporting previous suggestions that ceramide-mediated signaling may be compartmentalized to liquid-ordered (raft and raft-related) domains in the plasma membrane.  相似文献   

12.
In vertebrates, the formation of raft lipid microdomains plays an important part in both polarized protein sorting and signal transduction. To establish a system in which raft-dependent processes could be studied genetically, we have analyzed the protein and lipid composition of these microdomains in Drosophila melanogaster. Using mass spectrometry, we identified the phospholipids, sphingolipids, and sterols present in Drosophila membranes. Despite chemical differences between Drosophila and mammalian lipids, their structure suggests that the biophysical properties that allow raft formation have been preserved. Consistent with this, we have identified a detergent-insoluble fraction of Drosophila membranes that, like mammalian rafts, is rich in sterol, sphingolipids, and glycosylphosphatidylinositol-linked proteins. We show that the sterol-linked Hedgehog N-terminal fragment associates specifically with this detergent-insoluble membrane fraction. Our findings demonstrate that raft formation is preserved across widely separated phyla in organisms with different lipid structures. They further suggest sterol modification as a novel mechanism for targeting proteins to raft membranes and raise the possibility that signaling and polarized intracellular transport of Hedgehog are based on raft association.  相似文献   

13.
Cultures of MDCK II and human fibroblast cells were fed radioactive sphingosine and a radioactive GM3 ganglioside derivative containing a photoactivable group. The derived cell homogenates were treated with Triton X-100 and fractionated by sucrose-gradient centrifugation to prepare a detergent-insoluble membrane fraction known to be enriched in sphingolipid and caveolin-1, i.e. of caveolae. The detergent-insoluble membrane fraction prepared after feeding [1-3H]sphingosine to cells, was found to be highly enriched, with respect to protein content, in metabolically radiolabeled sphingomyelin and glycosphingolipids (about 18-fold). By feeding cells photoactivable radioactive GM3, after 2 h-chase, caveolin-1, CAV1, and proteins of high molecular mass became cross-linked to GM3, the cross-linking complexes being highly concentrated in the detergent-insoluble membrane fraction. The interaction between the ganglioside derivative and CAV1 was a time-dependent, transient process so that CAV1 cross-linking to GM3 was hardly detectable after a 24-h chase followed the pulse time. After a 24-h chase, only the high molecular mass proteins cross-linked to GM3 could be clearly observed. These results suggest that a portion of the GM3 administered to cells enters caveolae and moves to the glycosphingolipid domains, or enters caveolae that are then rapidly catabolized. Electron microscopy of cells in a culture immunostained with a monoclonal antibody to GM3 and a secondary gold-conjugated antibody detected several clusters of gangliosides on the plasma membranes separate from caveolae; gangliosides located inside the caveolae could not be detected. Scanning confocal microscopy of cells immunostained with anti-GM3 and anti-CAV1 Ig showed only a very small overlap with the CAV1 and GM3 signals. Thus, the biochemical and microscopic studies suggest that caveolae contain at most a low level of gangliosides and are separate from the GM3 ganglioside enriched domains.  相似文献   

14.
Caveolae are plasma membrane domains involved in the uptake of certain pathogens and toxins. Internalization of some cell surface integrins occurs via caveolae suggesting caveolae may play a crucial role in modulating integrin‐mediated adhesion and cell migration. Here we demonstrate a critical role for gangliosides (sialo‐glycosphingolipids) in regulating caveolar endocytosis in human skin fibroblasts. Pretreatment of cells with endoglycoceramidase (cleaves glycosphingolipids) or sialidase (modifies cell surface gangliosides and glycoproteins) selectively inhibited caveolar endocytosis by >70%, inhibited the formation of plasma membrane domains enriched in sphingolipids and cholesterol (‘lipid rafts'), reduced caveolae and caveolin‐1 at the plasma membrane by approximately 80%, and blunted activation of β1‐integrin, a protein required for caveolar endocytosis in these cells. These effects could be reversed by a brief incubation with gangliosides (but not with asialo‐gangliosides or other sphingolipids) at 10°C, suggesting that sialo‐lipids are critical in supporting caveolar endocytosis. Endoglycoceramidase treatment also caused a redistribution of focal adhesion kinase, paxillin, talin, and PIP Kinase Iγ away from focal adhesions. The effects of sialidase or endoglycoceramidase on membrane domains and the distribution of caveolin‐1 could be recapitulated by β1‐integrin knockdown. These results suggest that both gangliosides and β1‐integrin are required for maintenance of caveolae and plasma membrane domains.  相似文献   

15.
Zhu M  Qin ZJ  Hu D  Munishkina LA  Fink AL 《Biochemistry》2006,45(26):8135-8142
Alpha-synuclein, a presynaptic protein associated with Parkinson's disease, is found as both soluble cytosolic and membrane-bound forms. Although the function of alpha-synuclein is unknown, several observations suggest that its association with membranes is important. In the present study we investigated the effect of alpha-synuclein on lipid oxidation in membranes containing phospholipids with unsaturated fatty acids. The kinetics of lipid oxidation were monitored by the change in fluorescence intensity of the dye C11-BODIPY. We find that monomeric alpha-synuclein efficiently prevented lipid oxidation, whereas fibrillar alpha-synuclein had no such effect. Our data suggest that the prevention of unsaturated lipid oxidation by alpha-synuclein requires that it bind to the lipid membrane. The antioxidant function of alpha-synuclein is attributed to its facile oxidation via the formation of methionine sulfoxide, as shown by mass spectrometry. These findings suggest that the inhibition of lipid oxidation by alpha-synuclein may be a physiological function of the protein.  相似文献   

16.
Gangliosides are considered to be involved in the maintenance and repair of nervous tissues. Recently, novel roles of gangliosides in the regulation of complement system were reported. Here we summarized roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues by comparing complement activation, inflammatory reaction and disruption of glycolipid-enriched microdomain (GEM)/rafts among several mutant mice of ganglioside synthases. Depending on the defects in ganglioside compositions, corresponding up-regulation of complement-related genes, proliferation of astrocytes and infiltration of microglia were found with gradual severity. Immunoblotting of fractions separated by sucrose density gradient ultracentrifugation revealed that DAF and NCAM having GPI-anchors tended to disappear from the raft fraction with intensities of DKO > GM2/GD2 synthase KO > GD3 synthase KO > WT. The lipid raft markers tended to disperse from the raft fractions with similar intensities. Phospholipids and cholesterol also tended to decrease in GEM/rafts in GM2/GD2 synthase KO and DKO, although total amounts were almost equivalent. All these results indicate that GEM/rafts architecture is destroyed by ganglioside deficiency with gradual intensity depending on the degree of defects of their compositions. Implication of inflammation caused by deficiency of gangliosides in various neurodegenerative diseases was discussed.  相似文献   

17.
Sphingolipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and certain signaling molecules segregate from bulk membrane lipids into lateral domains termed lipid rafts, which are often isolated based on their insolubility in cold nonionic detergents. During immunohistological studies of gangliosides, major sphingolipids of the brain, we found that cold Triton X-100 solubility is bidirectional, leading to histological redistribution from gray to white matter. When brain sections were treated with > or =0.25% Triton X-100 at 4 degrees C, ganglioside GD1a, which is normally enriched in gray matter and depleted in white matter, redistributed into white matter tracts. Incubation of brain sections from knockout mice lacking GD1a with wild-type sections in the presence of cold Triton X-100 resulted in GD1a redistribution from wild-type gray matter to knockout white matter. GM1, which is normally enriched in white matter, remained in white matter after cold detergent treatment and did not migrate to knockout mouse brain sections. However, when gray matter gangliosides were enzymatically converted into GM1 in situ, the newly formed GM1 transmigrated to knockout mouse brain sections in the presence of cold detergent. When purified GD1a was added to knockout mouse brain sections in the presence of cold Triton X-100, it preferentially incorporated into white matter tracts. These data demonstrate that brain white matter is a sink for gangliosides, which redistribute from gray matter in the presence of low concentrations of cold Triton X-100. A GPI-anchored protein, Thy-1, also transmigrated from wild-type to Thy-1 knockout mouse brain sections in the presence of detergent at 4 degrees C, although less efficiently than did gangliosides. These data raise technical challenges for using nonionic detergents in certain histological protocols and for isolation of lipid rafts from brain tissue.  相似文献   

18.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   

19.
The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast total lipid extracts possess an inherent self-organization potential resulting in liquid-disordered-liquid-ordered phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined composition suggest that membrane domain formation depends on specific interactions between yeast sphingolipids and ergosterol. Taken together, these results provide a mechanistic explanation for lipid raft-dependent lipid and protein sorting in yeast.  相似文献   

20.
alpha-Synuclein is a major component of the fibrillary lesion known as Lewy bodies and Lewy neurites that are the pathologic hallmarks of Parkinson's disease (PD). In addition, point mutations in the alpha-synuclein gene imply alpha-synuclein dysfunction in the pathology of inherited forms of PD. alpha-Synuclein is a member of a family of proteins found primarily in the brain and is concentrated within presynaptic terminals. Here, we address the localization and membrane binding characteristics of wild type and PD mutants of alpha-synuclein in cultured cells. In cells treated with high concentrations of fatty acids, wild type alpha-synuclein accumulated on phospholipid monolayers surrounding triglyceride-rich lipid droplets and was able to protect stored triglycerides from hydrolysis. PD mutant synucleins showed variable distributions on lipid droplets and were less effective in regulating triglyceride turnover. Chemical cross-linking demonstrated that synuclein formed small oligomers within cells, primarily dimers and trimers, that preferentially associated with lipid droplets and cell membranes. Our results suggest that the initial phases of synuclein aggregation may occur on the surfaces of membranes and that pathological conditions that induce cross-linking of synuclein may enhance the propensity for subsequent synuclein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号