首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was performed on the HLA-DRbeta1*0401-collagen II peptide complex using the computation of electronic multipolar variables proposed by us previously. Furthermore, these results were compared with those obtained for the HLA-DRbeta1*0101-haemaglutinin peptide complex studied by us with the same tools, confirming that Pocket 1 for this new complex is also the most important pocket for the interaction between the presenting molecule and the presented peptide. The pocket hierarchy established for HLA-DRbeta1*0401 allele was P1 > P9 approximately P7 > P6 > P4, whilst a P1 > P4 > P9 approximately P7>P6 pocket hierarchy was found for HLA-DRbeta1*0101, showing how the relative importance of the pockets distinguishes the two alleles. There are high correlation levels with experimental results (when possible), again confirming the validity of using calculated values for electronic multipolar variables as a useful tool for studying interactions between immune system molecules and peptides.  相似文献   

2.
HLA-DRbeta1*0101-HA and HLA-DRbeta1*0401-HA complexes are studied and compared by means of their computationally derived multipolar moments and electrostatic potentials. Changes in electrostatic potential are associated with definite pocket interaction profiles. Thus, Pocket 1 projects itself as an anchoring pocket for both complexes, in accordance with experimental results. While Pocket 4 has an anchoring profile in the HLA-DRbeta1*0101 allele, it presents itself as modulating pocket-peptide interactions in HLA-DRbeta1*0401. Pockets 6 and 7 both strongly contribute to allele specificity, with Pocket 7 being very important for HLA-DRbeta1*0401-HA. Pocket 9 acts as a "double purpose" interaction site for both alleles. It both projects itself as an anchoring pocket as well as modulating pocket-peptide interactions.  相似文献   

3.
The Plasmodium falciparum acidic-basic repeat antigen represents a potential malarial vaccine candidate. One of this protein's high activity binding peptides, named 2150 ((161)KMNMLKENVDYIQKNQNLFK(180)), is conserved, non-immunogenic, and non-protection-inducing. Analogue peptides whose critical binding residues (in bold) were replaced by amino-acids having similar mass but different charge were synthesized and tested to try to modify such immunological properties. These analogues' HLA-DRbeta1* molecule binding ability were also studied in an attempt to explain their biological mechanisms and correlate binding capacity and immunological function with their three-dimensional structure determined by (1)H NMR. A 3(10) distorted helical structure was identified in protective and immunogenic peptide 24922 whilst alpha-helical structure was found for non-immunogenic, non-protective peptides having differences in alpha-helical position. The changes performed on immunogenic, protection-inducing peptide 24922 allowed it to bind specifically to the HLA-DRbeta1*0301 molecule, suggesting that these changes may lead to better interaction with the MHC Class II-peptide-TCR complex rendering it immunogenic and protective, thus suggesting a new way of developing multi-component, sub-unit-based anti-malarial vaccines.  相似文献   

4.
Because of the central role of CD4+ T cells in antitumour immunity, the identification of the MHC class II–restricted peptides to which CD4+ T cells respond has become a priority of tumour immunologists. Here, we describe a strategy permitting us to rapidly determine the immunogenicity of candidate HLA-DR–restricted peptides using peptide immunisation of HLA-DR–transgenic mice, followed by assessment of the response in vitro. This strategy was successfully applied to the reported haemaglutinin influenza peptide HA(307–319), and then extended to three candidate HLA-DR–restricted p53 peptides predicted by the evidence-based algorithm SYFPEITHI to bind to HLA-DR1*0101 (HLA-DR1) and HLA-DR1*0401 (HLA-DR4) molecules. One of these peptides, p53(108–122), consistently induced responses in HLA-DR1– and in HLA-DR4–transgenic mice. Moreover, this peptide was naturally processed by dendritic cells (DCs), and induced specific proliferation in the splenocytes of mice immunised with p53 cDNA, demonstrating that immune responses could be naturally mounted to the peptide. Furthermore, p53(108–122) peptide was also immunogenic in HLA-DR1 and HLA-DR4 healthy donors. Thus, the use of this transgenic model permitted the identification of a novel HLA-DR–restricted epitope from p53 and constitutes an attractive approach for the rapid identification of novel immunogenic MHC class II–restricted peptides from tumour antigens, which can ultimately be incorporated in immunotherapeutic protocols.  相似文献   

5.
6671 is a non-immunogenic, conserved high activity red blood cell binding peptide located between residues 141 and 160 of the Plasmodium falciparum RESA protein. This peptide's critical red blood cell (RBC) binding residues have been replaced by amino acids having similar mass but different charge to change their immunologic properties. Three analogues (two of them immunogenic and protective and one immunogenic) were studied by purified HLA-DRbeta1* binding and NMR to correlate their structure with their immunological properties. Native peptide 6671 had a very flexible beta-sheet structure, whilst its immunogenic, protective, and non-protective peptide analogues presented an alpha-helical structure having different locations and lengths. These changes in peptide structure facilitated their fitting into HLA-DRbeta1* molecules. This paper shows for the first time how modifications performed on RESA protein non-immunogenic, non-protectogenic peptides impose a configuration allowing them to fit perfectly into the MHC II-TCR complex, in turn leading to appropriate activation of the immune system.  相似文献   

6.
The search for a rational method of developing an antimalarial vaccine (malaria caused by Plasmodium falciparum) consists of blocking receptor-ligand interaction. Conserved peptides derived from proteins involved in invasion and having strong red blood cell binding ability have thus been identified; immunization studies using Aotus monkeys revealed that these peptides were neither immunogenic nor protection-inducing. Some of these peptides induced long-lasting and very high antibody titers and protection when their critical red blood cell binding residues were replaced to change their immunological properties. Others induced short-lived antibodies that were not associated with inducing protection. The three-dimensional structure of the short-lived antibody-inducing peptide was determined by (1)H NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain the relationship among three-dimensional structure, their ability to bind to major histocompatibility complex class II molecules (MHC II), and possible short-lived antibody production. These short-lived antibody-inducing peptides were 6.8 +/- 0.5 A shorter between those residues theoretically coming into contact with pocket 1 and pocket 9 of HLA-DRbeta1* molecules to which they bind than immunogenic and protection-inducing peptides. These more compact alpha-helical structures suggest that these short-lived antibody-inducing peptides could have a structure more similar to those of native peptides than immunogenic and protective ones. Such shortening was associated with a shift in HLA-DRbeta1* molecule binding and a consequent shift in functional register reading, mainly by alleles of the same haplotype when compared with immunogenic protection-inducing HABPs, suggesting an imperfect and different conformation of the MHC II peptide-TCR complex.  相似文献   

7.
The aim of these studies was to determine whether auto- and alloreactivity can arise from T cell recognition of MHC-peptides in context of syngeneic MHC. Four synthetic peptides derived from the first domain of the HLA-DR beta 1 * 0101 chain were used in limiting dilution analysis to prime T cells from HLA-DR1- and HLA-DR1+ responders. The frequency of T cells responding to these four peptides was similar in individuals with or without HLA-DR1. In both cases, the peptide corresponding to the nonpolymorphic sequence 43-62, was less immunogenic than peptides corresponding to the three hypervariable regions 1-20, 21-42, and 66-90, eliciting a lower number of reactive T cells. Experiments using a T cell line with specific reactivity to peptide 21-42 showed, however, that this response can be efficiently blocked by adding to the culture a nonpolymorphic sequence peptide. This suggests that alloreactivity can be blocked by use of monomorphic (self) peptides. The binding of both "monomorphic" and "polymorphic" synthetic DR1 peptides to affinity purified HLA-DR 1 and DR 11 molecules was measured using radiolabeled peptides and high performance size exclusion chromatography. The data showed that the polymorphic as well as monomorphic synthetic DR1 peptides bound to both DR1 and DR11 molecules. Competitive inhibition studies indicated that the monomorphic 43-62 peptide can block the binding of the polymorphic peptides, consistent with the results obtained in T cell cultures. Taken together these data suggest that anti-MHC autoreactive T cells are present in the periphery and that both auto and alloreactivity can be elicited by MHC peptides binding to MHC class II molecules.  相似文献   

8.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

9.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   

10.
Rheumatoid arthritis is an autoimmune disease in which susceptibility is strongly associated with the expression of specific HLA-DR haplotypes, including DR1 (DRB1*0101) and DR4 (DRB1*0401). As transgenes, both of these class II molecules mediate susceptibility to an autoimmune arthritis induced by immunization with human type II collagen (hCII). The dominant T cell response of both the DR1 and DR4 transgenic mice to hCII is focused on the same determinant core, CII(263-270). Peptide binding studies revealed that the affinity of DR1 and DR4 for CII(263-270) was at least 10 times less than that of the model Ag HA(307-319), and that the affinity of DR4 for the CII peptide is 3-fold less than that of DR1. As predicted based on the crystal structures, the majority of the CII-peptide binding affinity for DR1 and DR4 is controlled by the Phe(263); however, unexpectedly the adjacent Lys(264) also contributed significantly to the binding affinity of the peptide. Only these two CII amino acids were found to provide binding anchors. Amino acid substitutions at the remaining positions had either no effect or significantly increased the affinity of the hCII peptide. Affinity-enhancing substitutions frequently involved replacement of a negative charge, or Gly or Pro, hallmark amino acids of CII structure. These data indicate that DR1 and DR4 bind this CII peptide in a nearly identical manner and that the primary structure of CII may dictate a different binding motif for DR1 and DR4 than has been described for other peptides that bind to these alleles.  相似文献   

11.
Susceptibility to multiple sclerosis (MS) is associated with certain MHC class II haplotypes, in particular HLA-DR2. Two DR beta chains, DRB1*1501 and DRB5*0101, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP 84-102) to MBP-specific T cells from MS patients. We have determined the crystal structure of HLA-DR2a complexed with MBP 86-105 to 1.9 A resolution. A comparison of this structure with that of HLA-DR2b complexed with MBP 85-99, reported previously, reveals that the peptide register is shifted by three residues, such that the MBP peptide is bound in strikingly different conformations by the two MHC molecules. This shift in binding register is attributable to a large P1 pocket in DR2a, which accommodates Phe92, in conjunction with a relatively shallow P4 pocket, which is occupied by Ile95. In DR2b, by contrast, the small P1 pocket accommodates Val89, while the deep P4 pocket is filled by Phe92. In both complexes, however, the C-terminal half of the peptide is positioned higher in the binding groove than in other MHC class II/peptide structures. As a result of the register shift, different side-chains of the MBP peptide are displayed for interaction with T cell receptors in the DR2a and DR2b complexes. These results demonstrate that MHC molecules can impose different alignments and conformations on the same bound peptide as a consequence of topological differences in their peptide-binding sites, thereby creating distinct T cell epitopes.  相似文献   

12.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

13.
14.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

15.
In a previous study, we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide could induce severe chronic experimental autoimmune encephalomyelitis (EAE) in HLA-DR2(+) transgenic mice lacking all mouse MHC class II genes. We used this model to evaluate clinical efficacy and mechanism of action of a novel recombinant TCR ligand (RTL) comprised of the alpha(1) and beta(1) domains of DR2 (DRB1*1501) covalently linked to the encephalitogenic MOG-35-55 peptide (VG312). We found that the MOG/DR2 VG312 RTL could induce long-term tolerance to MOG-35-55 peptide and reverse clinical and histological signs of EAE in a dose- and peptide-dependent manner. Some mice treated with lower doses of VG312 relapsed after cessation of daily treatment, but the mice could be successfully re-treated with a higher dose of VG312. Treatment with VG312 strongly reduced secretion of Th1 cytokines (TNF-alpha and IFN-gamma) produced in response to MOG-35-55 peptide, and to a lesser degree purified protein derivative and Con A, but had no inhibitory effect on serum Ab levels to MOG-35-55 peptide. Abs specific for both the peptide and MHC moieties of the RTLs were also present after treatment with EAE, but these Abs had only a minor enhancing effect on T cell activation in vitro. These data demonstrate the powerful tolerance-inducing therapeutic effects of VG312 on MOG peptide-induced EAE in transgenic DR2 mice and support the potential of this approach to inhibit myelin Ag-specific responses in multiple sclerosis patients.  相似文献   

16.
We have examined the role of 12 polymorphic residues of the beta-chain of the HLA-DR1 class II molecule in T cell recognition of an epitope of pertussis toxin. Murine L cell transfectants expressing wild-type or mutant DR1 molecules (containing single amino acid substitutions in DR(beta 1*0101)) were used as APC in proliferation assays involving nine DR1-restricted T cell clones specific for peptide 30-42 of pertussis toxin. Four different patterns of recognition of the mutants were found among the pertussis-specific clones. Residues in the third hypervariable region (HVR) of DR(beta 1*0101) are critically important for all the T cell clones; amino acid substitutions at positions 70 and 74 abrogated recognition by all of the T cell clones, and substitutions at positions 67 and 71 eliminated recognition by most of the clones. In contrast, most single amino acid substitutions in the first and second HVR, predicted to be located in the floor of the peptide binding groove, had little or no effect on the proliferative responses of these clones. However, the involvement of beta-chain first and second HVR residues was demonstrated by the inability of transfectants expressing wild-type DR(beta 1*0404) (DR4Dw14) or DR(beta 1*1402) (DR6Dw16) to present peptide to these clones. These beta-chains have completely different first and second HVR compared with DR(alpha,beta 1*0101) although the third HVR are identical. These results illustrate the functional importance of third HVR residues of DR(beta 1*0101) and allow definition of the molecular interactions of the DR1 molecule with the 30-42 peptide.  相似文献   

17.
An effective malarial vaccine must contain multiple immunogenic, protection-inducing epitopes able to block and destroy the P. falciparum malaria parasite, the most lethal form of this disease in the world. Our strategy has consisted in using conserved peptides blocking parasite binding to red blood cells; however, these peptides are non-immunogenic and non-protection-inducing. Modifying their critical residues can make them immunogenic. Such peptides induced antibody titers (determined by immunofluorescence antibody test, IFA) and made the latter reactive (determined by Western blot) and protection inducing against experimental challenge with a highly infective Aotus monkey adapted P. falciparum strain. Modified peptides also induce highly non-protective long-lasting antibody levels. Modifications performed might allow them to bind specifically to different HLA-DRbeta purified molecules. These immunological and biological activities are associated with modifications in their three-dimensional structure as determined by (1)H-NMR. It was found that modified, high non-protective long-lasting antibody level peptides bound to HLA-DR molecules from a different haplotype (to which immunogenic, protection-inducers bind) and had 4.6 +/- 1.4 A shorter distances between residues fitting into these molecules' Pocket 1 to Pocket 9, suggesting fitting into an inappropriate HLA-DR molecule. A multi-component, subunit-based, malarial vaccine is therefore feasible if modified peptides are suitably modified for an appropriate fit into the correct HLA-DRbeta1* molecule in order to form a proper MHC-II-peptide-TCR complex.  相似文献   

18.
More than 95% of mugwort pollen-allergic individuals are sensitized to Art v 1, the major allergen in mugwort pollen. Interestingly, the CD4 T cell response to Art v 1 involves only one single immunodominant peptide, Art v 1(25-36) (KCIEWEKAQHGA), and is highly associated with the expression of HLA-DR1. Therefore, we investigated the molecular basis of this unusual immunodominance among allergens. Using artificial APC expressing exclusively HLA-DRB1*0101 and HLA-DRA*0101, we formally showed that DR1 acts as restriction element for Art v 1(25-36)-specific T cell responses. Further assessment of binding of Art v 1(25-36) to artificial HLA-DR molecules revealed that its affinity was high for HLA-DR1. Amino acid I27 was identified as anchor residue interacting with DR molecules in pocket P1. Additionally, Art v 1(25-36) bound with high affinity to HLA-DRB1*0301 and *0401, moderately to HLA-DRB1*1301 and HLA-DRB5*0101, and weakly to HLA-DRB1*1101 and *1501. T cell activation was also inducible by Art v 1(25-36)-loaded, APC-expressing HLA molecules other than DR1, indicating degeneracy of peptide binding and promiscuity of TCR recognition. Specific binding of HLA-DRB1*0101 tetramers containing Art v 1(19-36) allowed the identification of Art v 1(25-36)-specific T cells by flow cytometry. In summary, the immunodominance of Art v 1(25-36) relies on its affinity to DR1, but is not dictated by it. Future investigations at the molecular HLA/peptide/TCR and cellular level using mugwort pollen allergy as a disease model may allow new insights into tolerance and pathomechanisms operative in type I allergy, which may instigate new, T cell-directed strategies in specific immunotherapy.  相似文献   

19.

Background

There are several reports demonstrating the role of CD8 T cells against Leishmania species. Therefore peptide vaccine might represent an effective approach to control the infection. We developed a rational polytope-DNA construct encoding immunogenic HLA-A2 restricted peptides and validated the processing and presentation of encoded epitopes in a preclinical mouse model humanized for the MHC-class-I and II.

Methods and Findings

HLA-A*0201 restricted epitopes from LPG-3, LmSTI-1, CPB and CPC along with H-2Kd restricted peptides, were lined-up together as a polytope string in a DNA construct. Polytope string was rationally designed by harnessing advantages of ubiquitin, spacers and HLA-DR restricted Th1 epitope. Endotoxin free pcDNA plasmid expressing the polytope was inoculated into humanized HLA-DRB1*0101/HLA-A*0201 transgenic mice intramuscularly 4 days after Cardiotoxin priming followed by 2 boosters at one week interval. Mice were sacrificed 10 days after the last booster, and splenocytes were subjected to ex-vivo and in-vitro evaluation of specific IFN-γ production and in-vitro cytotoxicity against individual peptides by ELISpot and standard chromium-51(51Cr) release assay respectively. 4 H-2Kd and 5 HLA-A*0201 restricted peptides were able to induce specific CD8 T cell responses in BALB/C and HLA-A2/DR1 mice respectively. IFN-γ and cytolytic activity together discriminated LPG-3-P1 as dominant, LmSTI-1-P3 and LmSTI-1-P6 as subdominant with both cytolytic activity and IFN-γ production, LmSTI-1-P4 and LPG-3-P5 as subdominant with only IFN-γ production potential.

Conclusions

Here we described a new DNA-polytope construct for Leishmania vaccination encompassing immunogenic HLA-A2 restricted peptides. Immunogenicity evaluation in HLA-transgenic model confirmed CD8 T cell induction with expected affinities and avidities showing almost efficient processing and presentation of the peptides in relevant preclinical model. Further evaluation will determine the efficacy of this polytope construct protecting against infectious challenge of Leishmania. Fortunately HLA transgenic mice are promising preclinical models helping to speed up immunogenicity analysis in a human related mouse model.  相似文献   

20.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号