首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal Sensitivity of Lateral Inhibition in Limulus Eye   总被引:3,自引:3,他引:0       下载免费PDF全文
The effectiveness of lateral inhibition, measured as spike response decrement in a test ommatidium, produced by activity in a group of neighboring ommatidia, decreases as temperature decreases (Q10 of 2.6). The corresponding sensory transducer-spike encoding processes have a weaker temperature dependence (Q10 of 1.6). Relative synaptic delay, the time difference between the latency of inhibition onset and the latency of test receptor excitation, has a strong temperature dependence (Q10 of 5), while receptor potential onset latency (Q10 of 1.4) and optic nerve spike conduction velocity (Q10 of 1.7), two factors inherent in relative synaptic delay, are less temperature sensitive. Oscillations of optic nerve spike response ("bursting") may be produced by thermal adjustment of temperature-sensitive parameters of the lateral inhibitory network in the retina. Burst interval has a strong temperature dependence (Q10 of 2.4) and broad interspike interval distribution compared to the thermal sensitivity (Q10 of 1.4) and narrow spike interval spectrum of the response of a single unit within the bursting group.  相似文献   

2.
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic “currency” of the membrane. The dynamics of membrane voltage—so-called action, systemic, and variation potentials—have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport—an electrical “substrate”—and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.

Membrane voltage serves as a platform coordinating ion flux to transmit and transduce biological signals.

Advances
  • The biophysics of transport that determine membrane voltage are well-described with quantitative flux equations.
  • In the models of the guard cell and the giant algae Chara and Nitella these charge-transporting processes accurately describe and predict physiological behavior, including the coupling of membrane voltage oscillations with ion flux, [Ca2+]i, pH, their consequences for cellular osmotic adjustments, and their spatial propagation.
  • Unlike neuronal and other animal tissues, action potentials in plants are mediated by a temporal sequence of ion flux through Ca2+ and Cl- channels with voltage recovery driven by ion flux through K+ channels. The interplay of channel-mediated ion flux and changes in H+-ATPase activity are likely responsible for the slower propagation of variation and systemic potentials.
  • In terrestrial plants, membrane voltage transients may propagate along vascular traces, both through the parenchymal cells lining the xylem and through the phloem. Propagation of such voltage transients is associated with glutamate receptor-like channels that may contribute to plasma membrane Ca2+ flux and [Ca2+]i elevations.
  • Changes in [Ca2+]i, pH, and reactive oxygen species are key mediators that translate voltage signals into physiological, developmental, and adaptive responses in plant tissues.
  相似文献   

3.
  • 1.1. Replacing chloride (Cl) with sulfate (SO42−) in the bathing medium drastically reduced the mucosal membrane potential difference (ψm).
  • 2.2. The voltage divider ratio was significantly greater than one.
  • 3.3. Mucosal d-glucose decreased the input resistance of the intestinal epithelium.
  • 4.4. Addition of furosemide to the mucosal bathing medium inhibited transepithelial potential difference and short-circuit current.
  • 5.5. Addition of SITS to the mucosal bathing medium partially inhibited transepithelial potential difference and short-circuit current.
  • 6.6. Diffusion potentials in the intestinal epithelium were symmetrical.
  相似文献   

4.
Cortical somatosensory evoked potentials to posterior tibial nerve stimulation were obtained in 29 normal controls varying in age and body height. In obtaining these potentials we varied recording derivations and frequency settings. Our recordings demonstrated the following points:
  • 1.(1) N20 (dorsal cord potential) and the early cortical components (P2, N2) were the only potentials that were consistently recorded. All other subcortical components (N18, N24, P27, N30) were of relatively low amplitude and not infrequently absent even in normals.
  • 2.(2) All absolute latencies other than N2 were correlated with body height. However, interpeak latency differences were independent of body height.
  • 3.(3) Below the age of 20, subcortical but not cortical peak latencies correlated with age, but this appeared to be due to changes in body height in this age group.
  • 4.(4) Absolute amplitudes and amplitude ratios (left/right and uni/bilateral) showed marked interindividual variability and have very limited value in defining abnormality.
  • 5.(5) The use of restricted filter windows facilitated the selective recording of postsynaptic potentials (30–250 Hz) and action potentials (150–1500 Hz).
  相似文献   

5.
  • 1.1. Electrical, mechanical and morphological properties of M. thyroarytenoideus internus and externus (Int. M. and Ext. M., respectively) of the rabbit were investigated.
  • 2.2. The membrane potentials of Int. M. and Ext. M. were −80.1 and −77.2 mV, respectively, and both muscles generated the overshoot action potentials by electrical stimulation. The electrical properties of both muscles were essentially the same.
  • 3.3. The critical membrane potential to trigger the potassium-induced (K+) contracture was −52mV in Int. M. On the other hand, in Ext. M., the contracture was hardly developed, but when it was developed, the critical membrane potential was −25mV. The K+ contracture was facilitated in both muscles by substitution of Cl by Br, NO3 or SCN.
  • 4.4. Both muscles generated twitch contraction by electrical stimulation, and Ext. M. showed faster contraction than Int. M.
  • 5.5. Active state for the tension development of both muscles was compared. The decay time of Ext. M. was much shorter than that of Int. M. Substitution of Cl by foreign anions (Br, NO3 and SCN) and treatment with caffeine enhanced the amplitude and prolonged the duration of the active state of both muscles.
  • 6.6. Histochemical analysis (succinic dehydrogenase and myosin ATPase staining methods) revealed that Ext. M. was composed of solely white fibres, while Int. M. was composed of several types of fibres. The electron microscopic observation revealed that Int. M. was composed of red and intermediate fibres and Ext. M. was of white ones.
  • 7.7. The results suggest that the differences of mechanical properties were presumably due to the differences of development of sarcoplasmic reticulum in both muscle tissues. The specific features of these muscles were discussed in relation to vocal cord activity.
  相似文献   

6.
Resting sarcoplasmic reticulum (SR) Ca content ([CaSR]R) was varied in cut fibers equilibrated with an internal solution that contained 20 mM EGTA and 0–1.76 mM Ca. SR Ca release and [CaSR]R were measured with the EGTA–phenol red method (Pape et al. 1995. J. Gen. Physiol. 106:259–336). After an action potential, the fractional amount of Ca released from the SR increased from 0.17 to 0.50 when [CaSR]R was reduced from 1,200 to 140 μM. This increase was associated with a prolongation of release (final time constant, from 1–2 to 10–15 ms) and of the action potential (by 1–2 ms). Similar changes in release were observed with brief stimulations to −20 mV in voltage-clamped fibers, in which charge movement (Q cm) could be measured. The peak values of Q cm and the fractional rate of SR Ca release, as well as their ON time courses, were little affected by reducing [CaSR]R from 1,200 to 140 μM. After repolarization, however, the OFF time courses of Q cm and the rate of SR Ca release were slowed by factors of 1.5–1.7 and 6.5, respectively. These and other results suggest that, after action potential stimulation of fibers in normal physiological condition, the increase in myoplasmic free [Ca] that accompanies SR Ca release exerts three negative feedback effects that tend to reduce additional release: (a) the action potential is shortened by current through Ca-activated potassium channels in the surface and/or tubular membranes; (b) the OFF kinetics of Q cm is accelerated; and (c) Ca inactivation of Ca release is increased. Some of these effects of Ca on an SR Ca channel or its voltage sensor appear to be regulated by the value of [Ca] within 22 nm of the mouth of the channel.  相似文献   

7.
Charge movement in a fast twitch skeletal muscle from rat   总被引:3,自引:0,他引:3       下载免费PDF全文
Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.  相似文献   

8.
  • 1.1. Metabolic rates were highest during periods of maximum reproduction.
  • 2.2. The exponent of the metabolic rate-weight equation varied seasonally, rates of metabolism of small animals exhibited greater annual fluctuations than those of large animals.
  • 3.3. Absolute and weight-specific Q10s (determined at 5–10°C above field temperatures) for smaller clams were greatest in the winter; absolute values of Q10 were highest for larger individuals in the summer.
  • 4.4. Small clams had Q10 < 1.0 in the summer; Q10-values for larger clams were near 1.0 at this time.
  • 5.5. 38.9% of the total energy assimilated by the population annually was allocated to metabolism, which is near the low end of the range of values reported for freshwater molluscs, suggesting that this species can partition a large amount of energy to growth and reproduction.
  相似文献   

9.
Summary Pairs of spheroidal aggregates of embryonic chick heart cells, held in suction pipettes were brought into contact and allowed to synchronize their spontaneous action potentials. Contractions were suppressed with cytochalasin B. Both intracellular and extracellular electrodes were used to analyze the development of synchrony. Electric coupling occurred in three phases. During phase I electrical interactions were absent despite close physical contact. Phase II was characterized by partial synchrony. Action potentials in the faster aggregate (F) induced small depolarizations in the other member of the pair (S). These depolarizations sometimes triggered action potentials inS depending on when during the diastolic depolarization inS they occurred. In these cases both the latency between the action potentials (L) and the fluctuations in latency (V L) were large. At the end of phase II the aggregates often passed through a brief period when fluctuation in interbeat interval in both increased noticeably. In phase III, beginning about 8 min after initial contact, action potentials were completely entrained at a certainL. During the subsequent 20–40 minL fell along an approximately exponential time course from about 130 to <1 msec, whileV L declined in parallel. When well-coupled aggregates were pulled apart and immediately pressed back together, they re-established synchronization according to the usual three-phase time course. Synchronized aggregates could be partially decoupled by separating them just far enough to reduce the area of mutual contact. Pairs joined only by cellular strands maintained entrained action potentials with long latencies for many minutes. These results indicate that electronic junctions form between the paired heart cell aggregates causing the gradual development of action potential synchrony.  相似文献   

10.
Summary In response to mechanical stimuli the protozoan,Stentor coeruleus, contracts in an all-or-none fashion and simultaneously reverses the direction of its ciliary beat. These behaviors have previously been shown to be correlated with the presence of a mechanoreceptor potential and all-or-none action potential (Wood 1970, 1973a). In the studies reported below the ionic bases of the resting, receptor and action potentials ofStentor were determined by use of intracellular microelectrodes penetrating animals chilled to 8.5–10 °C. The resting potential is most dependent on the extracellular concentration of KCl but some dependence on CaCl2 concentration was also observed. If allowance is made for the large increases in membrane conductance observed in solutions containing 2–8 mM KCl it is found that the resting potential data are well described by a modified form of the Goldman equation whereP Ca/P K = 0.068 andP Cl/P K = 0.072. The intracellular ionic activities (K i + = 13.1 mM, Cl i = 9.9 mM, Ca i + = 0 mM) which provide the best fit of this equation to the resting potential data are in close agreement with the intracellular concentration values measured by flame microspectrophotometry (Ki=12.4 mM, Cli = 9.4 mM) except in the case of Cai where most of the intracellular concentration is presumed to be bound. 65 to 75 mV action potentials are produced by suprathreshold depolarizations but contractions were not generally seen in these chilled animals, only ciliary reversals. The action potential peak varies with CaCl2 concentration with a slope of 12.6 mV/10 fold change but varies only slightly with KCl or Cl concentration. These peak potentials are well described by assuming that theP Ca/P k = 7.9 andP Cl/P K=1.0 at the time of the action potential peak. Depolarizing receptor potentials and brief inward receptor currents were observed for all forms of punctate and gross bodily mechanical stimulation employed. No evidence was found for any form of hyperpolarizing mechanoreceptor potentials as observed in some other ciliates. The reversal potential of the mechanoreceptor current varied with CaCl2 concentration in a manner similar to that of the action potential peak. As in the case of the action potential both theP Ca/P k andp cl/p k ratios appear to increase as a result of mechanical stimulation to 9.3–15 and 1.2–1.95 respectively. Mechanoreceptor currents are voltage dependent being increased when the membrane is depolarized above resting potential and decreased when the membrane is hyperpolarized. In general the electrophysiological characteristics ofStentor appear similar to those ofParamecium andStylonychia, but its resting membrane appears more selectively permeable to K+, it produces only depolarizing receptor potentials when mechanically stimulated and the initial action potential elicited by depolarizing current pulses can be all-or-none even in culture medium.  相似文献   

11.
(1) Two populations of reaction centers in the chromatophore membrane can be distinguished under some conditions of initial redox poise (300 mV < Eh < 400 mV): those which transfer a reducing equivalent after the first flash from the secondary quinone (QII) of the reaction center to cytochrome b of the ubiquinone-cytochrome c2 oxidoreductase; and those which retain the reducing equivalent on Q?II until a second flash is given. These two populations do not exchange on a time scale of tens of seconds. (2) At redox potentials higher than 400 mV, Q?II generated after the first flash is no longer able to reduce cytochrome b-560 even in those reaction centers associated with an oxidoreductase. Under these conditions, doubly reduced QII generated by a second flash is required for cytochrome b reduction, so that the QII effectively functions as a two-electron gate into the oxidoreductase at these high potentials. (3) At redox potentials below 300 mV, although the two populations of QII are no longer distinguishable, cytochrome b reduction is still dependent on only part of the reaction center population. (4) Proton binding does not oscillate under any condition tested.  相似文献   

12.
Peter Horton 《BBA》1981,637(1):152-158
The shape of the fluorescence induction curve in chloroplasts inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea has been determined at different redox potentials. At ?10 mV a monophasic and sigmoidal curve is seen which is transformed into an exponential curve when the potential is poised at ?150 mV. At this potential, the quencher with high midpoint, QH, is reduced but that with low midpoint, QL, is oxidized. Thus, a sigmoidal induction is observed during photoreduction of QL and QH but photoreduction of QL proceeds with exponential kinetics. A correlation between the relative proportions of QL and QH observed in redox titration and the sigmoidicity of induction is also seen upon depletion of Mg2+ and after alkalinization to pH 9.5. Several models are discussed to explain the relationship between Photosystem II interactions and Q heterogeneity.  相似文献   

13.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

14.
I. L. Sun  E. E. Sun  F. L. Crane 《Protoplasma》1995,184(1-4):214-219
Summary The addition of coenzyme Q10 to culture media stimulates the serum-free growth of HeLa, HL-60 cells, and mouse fibroblasts (Balb/3T3). With HeLa cells, the stimulation by coenzyme Q10 is additive to the stimulation by ferricyanide, an impermeable electron acceptor for the transplasma membrane electron transport. This combined response to coenzyme Q10 and ferricyanide is enhanced with insulin. -Tocopherylquinone can also stimulate the growth of HeLa cells, but vitamin K1 is inactive. Specificity of quinone effects is indicated. Serum-free growth of Balb/3T3 and SV 40 transformed BaIb/3T3 (SV/T2) cells is also stimulated by coenzyme Qio with stimulation similar to HeLa cells. However, Balb/3T3 cells are not stimulated by ferricyanide, which does not increase the response to coenzyme Q10. The transformed cells (SV/T2) respond better to ferricyanide alone, but the effects of coenzyme Qio and ferricyanide are not additive. Serum-free growth of HL-60 cells is stimulated dramatically by coenzyme Q10. The extent of growth stimulation on HL-60 cells is almost six-fold that of HeLa or Balb/3T3 cells. The stimulation of NADH-ferricyanide reductase (a transmembrane redox enzyme) by coenzyme Q10 with HL-60 cells is similar to their growth pattern in response to coenzyme Q10. Unlike HL-60, HeLa and Balb/3T3 cells show little stimulation of ferricyanide reduction by coenzyme Q10. The stimulatory effect on both ferricyanide reduction and cell growth by the short side-chain coenzyme Q2 is much less than that of the long side-chain coenzyme Q10. Ferricyanide reduction by HeLa cells is inhibited by coenzyme Q analogs such as 2,3-dimethoxy-5-chloro-6-naphthyl-mercapto-coenzyme Q and 2-methoxy-3-ethoxyl-5-methyl-6-hexadecyl-mercapto-coenzyme Q. However, these inhibitions are reversed by coenzyme Q10. The growth inhibition of HL-60 cells by other coenzyme Q analogs, such as capsiacin can also be reversed by coenzyme Q10. These data indicate that plasma membrane-based NADH oxidation or modification of the membrane quinone redox balance may be a basis for the growth stimulation.  相似文献   

15.
The aim of this study was to compare cerebral evoked potentials following selective activation of Aβ and Aδ fibers. In 15 healthy subjects, Aβ fibers were activated by electrical stimulation of the left radial nerve at the wrist. Aδ fibers were activated by short painful radian heat pulses, applied to the dorsum of the left hand by a CO2 laser. Evoked potentials were recorded with 15–27 scalp electrodes, evenly distributed over both hemispheres (bandpass 0.5–200 Hz). The laser-evoked potentials exhibited a component with a mean peak latency of 176 msec (N170). Its scalp topography showed a parieto-temporal maximum contralateral to the stimulus side. In contrast, the subsequent vertex negativity (N240), which appeared about 60 msec later, had a symmetrical scalp distribution. Electrically evoked potentials showed a component at 110 msec (N110), that had a topography similar to the laser-evoked N170. The topographies of the N170 and N110 suggest that they may both be generated in the secondary somatosensory cortex. There was no component in the electrically evoked potential that had a comparable interpeak latency to the following vertex potential: for N60 it was longer, for N110 it was shorter. On the other hand, in the laser-evoked potentials no component could be identified the topography of which corresponded to the primary cortical component N20 following electrical stimulation.  相似文献   

16.
Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2–22°C. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2–0.3 eo. The Ig On response obtained between −60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from −60 to −10 mV, and ∼0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at −50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between −90 and −50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8°C and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change.  相似文献   

17.
  • 1.1. Cardiac frequency patterns of Callincctes sapidus Rathbun were used to evaluate potential thermal stress after exposure to 5°C increases over a range of acclimation temperatures from 5° to 30°C.
  • 2.2. An acclimated rate-temperature curve (R-T curve), acute R-T curves of the stabilized rates at the increased temperatures and Q10 temperature coefficients were used to assess the significance of the changes in rate frequency.
  • 3.3. The acclimated R-T curve showed that blue crabs go through a series of seasonal adaptation types characterized by a plateau of perfect adaptation for both cold and warm adapted organisms. Paradoxical adaptation occurred between the transition from cold to warm acclimation temperatures.
  • 4.4. The acute R-T curves showed that cardiac frequency was highly responsive to a 5°C increase when the organisms were acclimated to low temperatures.
  • 5.5. The Q10's of the acute R-T curves at the warm acclimation temperatures approximated those values derived for the acclimated R-T curve.
  • 6.6. This suggests that the temperature increase had a negligible effect on the warm adapted crabs, that is, little or no thermal stress occurred.
  相似文献   

18.
The latency of the cortical SEP (CSEP) following stimulation of the posterior tibial nerve is nearly always shorter than the latency of the CSEP evoked by stimulation of the sural nerve. Till now this fact was believed to be due mainly to different conduction velocities within the peripheral nerves owing to the muscle afferents of the posterior tibial nerve. The surprising discovery that the lumbar and cervical SEPs exhibit much shorter time lags than the CSEPs led to the experiments described in this paper: during the registration of the peripheral sciatic nerve action potentials only slight differences in the conduction velocities were observed. Thereupon a topographical analysis was performed during which the minimum latency of the sural nerve CSEP was not measured at the usual C′z electrode position but was found to be shifted to a more occipital and ipsilateral point.From these results it was concluded that, for the main part, the latency difference of the CSEPs results from ‘central factors’, which had already been postulated for the median nerve CSEP by Burke and coworkers.  相似文献   

19.
The human ether-á-go-go–related gene (hERG) K+ channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q1 and Q2, with V1/2’s of −55.7 (equivalent charge, z = 1.60) and −54.2 mV (z = 1.30), respectively, with the Q2 charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q1 and Q2, decreasing to 4.3 ms for Q2 at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V1/2 of −64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q1 and Q2 charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.  相似文献   

20.
Several studies have shown multiple confounding factors influencing soil respiration in the field, which often hampers a correct separation and interpretation of the different environmental effects on respiration. Here, we present a controlled laboratory experiment on undisturbed organic and mineral soil cores separating the effects of temperature, drying–rewetting and decomposition dynamics on soil respiration. Specifically, we address the following questions:
  • 1 Is the temperature sensitivity of soil respiration (Q10) dependent on soil moisture or soil organic matter age (incubation time) and does it differ for organic and mineral soil as suggested by recent field studies.
  • 2 How much do organic and mineral soil layers contribute to total soil respiration?
  • 3 Is there potential to improve soil flux models of soil introducing a multilayer source model for soil respiration?
Eight organic soil and eight mineral soil cores were taken from a Norway spruce (Picea abies) stand in southern Germany, and incubated for 90 days in a climate chamber with a diurnal temperature regime between 7 and 23°C. Half of the samples were rewetted daily, while the other half were left to dry and rewetted thereafter. Soil respiration was measured with a continuously operating open dynamic soil respiration chamber system. The Q10 was stable at around 2.7, independent of soil horizon and incubation time, decreasing only slightly when the soil dried. We suggest that recent findings of the Q10 dependency on several factors are emergent properties at the ecosystem level, that should be analysed further e.g. with regard to rhizosphere effects. Most of the soil CO2 efflux was released from the organic samples. Initially, it averaged 4.0 μmol m?2 s?1 and declined to 1.8 μmol m?2 s?1 at the end of the experiment. In terms of the third question, we show that models using only one temperature as predictor of soil respiration fail to explain more than 80% of the diurnal variability, are biased with a hysteresis effect, and slightly underestimate the temperature sensitivity of respiration. In contrast, consistently more than 95% of the diurnal variability is explained by a dual‐source model, with one CO2 source related to the surface temperature and another CO2 source related to the central temperature, highlighting the role of soil surface processes for ecosystem carbon balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号