首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

2.
Wet mass and water content of four lots of whole eggs did not change throughout embryonic development of rainbow trout Oncorhynchus mykiss. Eggs in all four lots accumulated Na+. Eggs in lots 2 and 4 also accumulated Ca2+ and Cl-, whereas eggs in lot 1 showed no significant change in Ca2+ or Cl- and eggs in lot 3 showed no change in Cl-and a small loss of Ca2+. Although the Na+ content of embryonic tissues increases in the later stages of development, the yolk sac content remained constant, indicating uptake of Na+ from the environment. Na+ uptake by whole eggs was non-saturable, consistent with diffusion of Na+ across the chorion into the perivitelline fluid. Na+ uptake in dechorionated embryos was saturable, as was Ca2+ uptake by both whole eggs and dechorionated embryos, consistent with active uptake or facilitated diffusion mechanisms at the surface of embryos. Very low Ca2+ uptake rates in dechorionated embryos suggest that the Ca2+ uptake mechanism is not fully developed until after hatching.  相似文献   

3.
Abstract: Al complexes are known to accumulate in extra- and intracellular compartments of the brain in the course of different encephalopathies. In this study possible effects of Al accumulation in the cytoplasmic compartment on mitochondrial metabolism were investigated. Al, like Ca, inhibited pyruvate utilization as well as citrate and oxoglutarate accumulation by whole brain mitochondria. Potencies of Ca2+total effects were 10–20 times stronger than those of Al. Al decreased mitochondrial acetyl-CoA content in a concentration-dependent manner, along with an equivalent rise of free CoA level, whereas Ca caused loss of both intermediates from mitochondria. In the absence of Pi in the medium, Ca had no effect on mitochondrial metabolism, whereas Al lost its ability to suppress pyruvate utilization and acetyl-CoA content in Ca-free conditions. Verapamil potentiated, whereas ruthenium red reversed, Ca-evoked suppression of mitochondrial metabolism. On the other hand, in Ca-supplemented medium, Al partially overcame the inhibitory influence of verapamil. Accordingly, verapamil increased mitochondrial Ca levels much more strongly than Al. However, Al partially reversed the verapamil-evoked rise of Ca2+total level. These data indicate that Al accumulated in cytoplasm in the form of the Al(PO4)OH complex may inhibit mitochondrial functions by an increase of intramitochondrial [Ca2+]total resulting from the Al-evoked rise of cytoplasmic [Ca2+]free, as well as from inhibitory interference with the verapamil binding site on the Na+/Ca2+ antiporter.  相似文献   

4.
Vegetalization Induced by Procaine and Tetracaine in Sea Urchin Embryos   总被引:4,自引:4,他引:0  
Vegetalization of sea urchin embryos was induced by the treatment with procaine and tetracaine, inhibitors of Ca2+mobilization, for 3 hr starting 3–5 hr after insemination at 20°C. The treatment starting 7 hr after insemination sometimes produced similar type of vegetalized embryos. The pulse treatment starting at the other stages hardly yielded vegetalized embryos. The stages at which these compounds were effective to produce vegetalized embryos were almost the same to those for Li+to make embryos vegetalized. On the basis of known inhibitory effects of tetracaine, procaine and Li+on Ca2+mobilization, we postulate that Ca2+dependent reactions participate in the process of cell determination at these stages. Inhibitory effects of procaine, tetracaine and Li+on Ca2+dependent induction of fertilization membrane formation, found in the present study, indicate that these compounds block Ca2+mobilization in sea urchin eggs.  相似文献   

5.
Ryanodine, miconazole, clotrimazole, doxorubicin, quercetin, halothane, caffeine and chloroform, which activate Ca2+-induced Ca2+release from Ca2+stores, induced Ca2+release from a particulate fraction isolated from sea urchin eggs, Ca2+influx into eggs and formation of a fertilization membrane in an appreciable number of eggs. Their minimum effective concentrations for inducing a fertilization membrane increased in the order of these drugs listed above, and this order was also the same as that of their minimum effective concentrations for inducing Ca2+release from the isolated particulate fraction. Their effect in inducing a fertilization membrane was blocked by ruthenium red and procaine, which inhibit Ca2+release from Ca2+stores. Thus these drugs probably induced sufficient Ca2+release to make the cytosolic Ca2+level high enough in many eggs for formation of a fertilization membrane. In the absence of external Ca2+, fewer eggs treated with these drugs formed a fertilization membrane and more eggs did so on further treatment with either A23187 or carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP). Thus, a high level of Ca2+is probably derived from Ca2+release through Ca2+releasing channels (by A23187), from mitochondria (by FCCP) and its transport from the external medium.  相似文献   

6.
Abstract: The ability of mitochondrial Ca2+ transport to limit the elevation in free cytoplasmic Ca2+ concentration in neurones following an imposed Ca2+ load is reexamined. Cultured cerebellar granule cells were monitored by digital fura-2 imaging. Following KCI depolarization, addition of the protonophore carbonylcyanide m -chlorophenylhydrazone (CCCP) to depolarize mitochondria released a pool of Ca2+ into the cytoplasm in both somata and neurites. No CCCP-releasable pool was found in nondepolarized cells. Although the KCI-evoked somatic and neurite Ca2+ concentration elevations were enhanced when CCCP was present during KCI depolarization, this was associated with a collapsed ATP/ADP ratio. In the presence of the ATP synthase inhibitor oligomycin, glycolysis maintained high ATP/ADP ratios for at least 10 min. The further addition of the mitochondrial complex I inhibitor rotenone led to a collapse of the mitochondrial membrane potential, monitored by rhodamine-123, but had no effect on ATP/ADP ratios. In the presence of rotenone/oligomycin, no CCCP-releasable pool was found subsequent to KCI depolarization, consistent with the abolition of mitochondrial Ca2+ transport; however, paradoxically the KCI-evoked Ca2+ elevation is decreased. It is concluded that the CCCP-induced increase in cytoplasmic Ca2+ response to KCI is due to inhibition of nonmitochondrial ATP-dependent transport and that mitochondrial Ca2+ transport enhances entry of Ca2+, perhaps by removing the cation from cytoplasmic sites responsible for feedback inhibition of voltage-activated Ca2+ channel activity.  相似文献   

7.
Abstract: The growth cone is responsible for axonal elongation and pathfinding by responding to various modulators for neurite growth, including neurotransmitters, although the sensor mechanisms are not fully understood. Among neurotransmitters, GABA is most likely to demonstrate activity in vivo because GABA and the GABAA receptor appear even in early stages of CNS development. We investigated the GABAA receptor-mediated signaling pathway in the growth cone using isolated growth cones (IGCs). Both the GABAA binding site and the benzodiazepine modulatory site were enriched in the growth cone membrane. In the intact IGC, GABA induced picrotoxin-sensitive Cl flux (not influx but efflux) and increased the intracellular Ca2+ concentration in a picrotoxin- and verapamil-sensitive manner. Protein kinase C (PKC)-dependent phosphorylation of two proteins identified as GAP-43 and MARCKS protein was enhanced in the intact IGC stimulated by GABA, resulting in the release of MARCKS protein and GAP-43 from the membrane. Collectively, our results suggest the following scheme: activation of the functional GABAA receptor localized in the growth cone membrane → Cl efflux induction through the GABAA-associated Cl channel → Ca2+ influx through an L-type voltage-sensitive Ca2+ channel → Ca2+-dependent phosphorylation of GAP-43 and MARCKS protein by PKC.  相似文献   

8.
Transport of Ca2+ through discs of apple fruit tissue was examined in tissue taken at different stages of fruit development. Transport rates decreased with fruit development when cation exchange was the predominant influence on transport (with 10−6 M 45CaCl2 as the source solution). This decrease was associated with a reduction in relative cell wall surface area, cation exchange capacity and cell wall yield that occurred during fruit growth. When diffusion was the major transport force, and when transport was influenced by solution infiltration of the tissue disc (10−2 M 45CaCl2 in the source solution), transport rates increased during fruit growth. This increment was related to increases in air space of the tissue. Ca2+ transport through apple fruit tissue is influenced by the extent and nature of the cell wall, changing proportions of air space and Ca2+ concentration in the extracellular solution.  相似文献   

9.
The Acrosome Reaction Induced by Dimethylsulfoxide in Sea Urchin Sperm   总被引:1,自引:1,他引:0  
The acrosome reaction in sea urchin sperm, as judged by disappearance of the acrosomal vesicles in Nomarski optics, was induced by dimethylsulfoxide (DMSO) at concentration above 0.1% in normal artificial sea water. The number of the acrosome-reacted spermatozoa increased in proportion to DMSO concentration. The DMSO-induced acrosome reaction, as well as the jelly water- or A23187-induced one, was inhibited by nifedipine and hardly occurred in Ca2+-free artificial sea water. However, the DMSO-induced acrosome reaction was found in a few number of spermatozoa in the presence of Ca2+at above 0.5 mM, though the jelly water- or A23187-induced acrosome reaction did not occur at external Ca2+levels lower than 1 mM. Dependency of the acrosome reaction by DMSO on external Ca2+is somewhat lower than that of the reaction by jelly water. In Ca2+-free artificial sea water, the acrosomal regions of DMSO-treated spermatozoa attached to their own tails. In some cases, spermatozoa thus treated with DMSO in Ca2+free artificial sea water caused formation of fertilization membrane in a few number of eggs kept in Ca2+-free artificial sea water. Even in the absence of extermal Ca2+, preliminary step of the acrosome reaction seems to be completed probably by DMSO-induced weak Ca2+-mobilization in spermatozoa.  相似文献   

10.
Apoplastic pH and ionic conditions exert strong influence on cell wall metabolism of many plant tissues; however, the nature of the apoplastic environment of ripening fruit has been the subject of relatively few studies. In this report, a pressure-bomb technique was used to extract apoplastic fluid from tomato fruit ( Lycopersicon esculentum Mill.) pericarp at several developmental stages. pH and the levels of K+, Na+, Ca2+, Mg2+, Cl and P were determined and compared with the values for the bulk pericarp and locule tissues. The pH of the apoplastic fluid from pericarp tissue decreased from 6.7 in immature and mature-green fruits to 4.4 in fully-ripe fruit. During the same period, the K+ concentration increased from 13 to 37 m M . The levels of Na+ and divalent cations did not change, whereas the anions P and Cl increased in ripe fruit. Ca2+ levels remained relatively constant during ripening at 4–5 m M , concentrations that effectively limit pectin solubilization. The electrical conductivity of the apoplastic liquid increased 3-fold during ripening, whereas osmotically active solutes increased 2-fold. Pressure-treated fruit retained the capacity to ripen. The decline in apoplastic pH and increase in ionic strength during tomato fruit ripening may regulate the activity of cell wall hydrolases. The potential role of apoplastic changes in fruit ripening and softening is discussed.  相似文献   

11.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

12.
Eggs of the sea urchin, Hemicentrotus pulcherrimus , were stimulated by halothane, known to induce Ca2+ release from sarcosome, to cause fertilization membrane formation in normal and Ca2+ free artificial sea water. In the absence of external Ca2+, halothane-induced formation of fertilization membrane was inhibited by dantrolene, an inhibitor of Ca2+ release from sarcosome, but was not blocked by nifedipine, a Ca2+ antagonist specific to Ca2+ channels in plasma membrane. Ca2+ release from sedimentable fraction isolated from eggs was induced by halothane and was inhibited by dantrolene, but was not blocked by nifedipine. In normal artificial sea water, halothane-caused egg activation was not inhibited either by dantrolene or by nifedipine, but was blocked in the presence of both compounds. 45Ca2+ influx was substantially stimulated by halothane in eggs exposed to 45CaCl2. Halothane-induced 45Ca2+ influx into eggs was inhibited by nifedipine but was not blocked by dantrolene. When Ca2+ release from intracellular organellae is blocked, Ca2+ transport through Ca2+ channels in plasma membrane probably acts as a "fail-safe" system to induce an increase in cytosolic Ca2+ level, resulting in egg activation.  相似文献   

13.
Abstract: GM1 in the nuclear membrane, previously shown to be up-regulated during neurite outgrowth, has been found to influence nuclear Ca2+ flux during differentiation of Neuro-2a cells. Nuclei were isolated from cultured Neuro-2a cells before and after neuraminidase-induced neuritogenesis and incubated with 45Ca2+ for varying periods to determine uptake/efflux of Ca2+. At 5, 10, and 15 min 45Ca2+ levels in nuclei from differentiated cells were significantly lower than those in nuclei from untreated cells. The same result was obtained when the GM1 level was elevated artificially by preincubation of the nuclei in 10 µ M GM1. In experiments designed to measure efflux specifically, isolated nuclei preincubated in GM1 released 45Ca2+ more rapidly than untreated nuclei. We conclude that one role of GM1 in the nuclear membrane is to alter Ca2+ regulatory mechanisms in the nucleus following onset of neuronal process outgrowth.  相似文献   

14.
Although some studies have reported an interaction between boron (B) and calcium (Ca2+) in higher plants, there is little evidence for a similar relationship in cyanobacteria. The present study was designed to determine the effect of a supplement of boron to Ca2+-deficient cultures of Anabaena PCC 7119 and Synechococcus PCC 7942. Grown under Ca2+ deprivation, Anabaena had a slow growth rate and a low photosynthetic pigment content that was related to an inhibition of photosynthesis. Ca2+-deficient cells showed a lack of cohesiveness of the heterocyst envelope layers, which was consistent with a rapid decline in nitrogenase activity. A supplement of B led to partial recovery from the effects caused by lack of Ca2+. Similarly, low Ca2+ had inhibitory effects on growth and metabolism of Synechococcus cultures. In this case, the effect of a B supplement depended on the concentration of Ca2+ in the growth medium. When Ca2+ was present at normal concentration. B was not required, at least no more than trace amounts. However, when the Ca2+ concentration decreased, B was required at increasing levels. An effect of boron on uptake and/or on the binding of Ca2+ in cyanobacteria is proposed.  相似文献   

15.
Abstract: The mechanism of glutamate release from cultured cerebellar granule neurones in response to a chemical model of ischaemia (10 m M 2-deoxyglucose plus 1 m M sodium cyanide) was investigated. In the first 2 min of ischaemia, release of preloaded d -[3H]aspartate could be extensively attenuated by tetanus toxin and bafilomycin A1 and was dependent on the activation of Ca2+ channels sensitive to the "Q" type Ca2+ channel antagonist, ω-conotoxin-MVIIC. During this period, ATP/ADP ratios fell rapidly. The extent of release in the first 2 min was comparable to that evoked by 2-min depolarization by 50 m M KCl. Free Ca2+ concentrations, determined in neurites and somata, did not increase until after 2 min. The neurite increase in cellular Ca2+ precedes that of the cell somata. Release of d -[3H]aspartate was partially inhibited by the NMDA receptor antagonist MK-801, which also delayed the increase in free Ca2+ concentration. Prolonging the period of ischaemia to 6 and 10 min produced no further increase in the apparently exocytotic component of release, but initiated an extensive nonexocytotic release of the amino acid. Studies with the synaptic vesicle membrane probe FM1-43 in which released amino acid was removed by superfusion indicated that Ca2+-dependent exocytosis was delayed in this system. It is concluded that chemical ischaemia initiates an initial exocytotic followed by nonexocytotic release and that the former is facilitated by NMDA receptor activation. These events occur in cells that are still able to exclude propidium iodide, indicating that cell death has not yet occurred.  相似文献   

16.
Abstract— To establish compartments involved in depolarization-induced release of γ-aminobutyric acid (GABA) in rat brain slices, the amount of exogenous labeled and endogenous GABA released and retained was followed during 48 min exposure to 50 m m -K+ or to 50 μ m -veratridine. Endogenous GABA was measured with high performance liquid chromatography. The presence of 10 μ m -aminooxyacetic acid throughout prevented both the metabolism of GABA and the formation of endogenous GABA due to depolarization. During super-fusion with 50 m m -K+ and 2.6 m m -Ca2+ the efflux of labeled and endogenous GABA after an initial large increase declined to 10% of the highest value with constant and identical rates. Kinetic analysis of efflux showed that 10% of endogenous and 25% of labeled GABA present is available for release by high K+ and Ca2+. In the absence of Ca2+, release by high K+ of both labeled and endogenous GABA was nearly suppressed. Veratridine, unlike high K+, caused an efflux which declined with an initial fast and late very slow phase. The slow efflux by veratridine was doubled in the absence of Ca2+. Exposure to veratridine in the absence of Ca2+ during 120 min released nearly 70% of labeled and endogenous GABA present. Results suggest that only about 0.25 μmol g−1 endogenous GABA is the source of physiological Ca2+-dependent release, while much of the remaining GABA present is released only under unphysiological conditions.  相似文献   

17.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

18.
Abstract. It is suggested that increased levels of free cytosolic calcium ([Ca2+]cyt) may serve as the primary physiological transducer of chilling injury in plants. Numerous similarities between the effects of [Ca2+]cyt-raising treatments on plants and the effects of chilling temperatures on chilling-sensitive (CS) plants are noted. It is proposed that chilling temperatures may lead to increases in [Ca2+]cyt in CS plant cells by reducing the rate at which they exclude Ca2+ from their cytosol and that rapid cooling (coldshock) may cause rapid increases in [Ca2+]cyt due to the activation of voltage-dependent cation channels. Chill-induced increases in [Ca2+]cyt in the cells of CS plants may reflect either an inherent inability of such plants to maintain homeostatic levels of Ca2+ at low temperatures or a stress-induced reaction which has evolved to enable such cells to cope more effectively with the short-term hardships imposed by cold. Previous proposals concerning the physiological transduction of chilling injury are also discussed. It is argued that there is little evidence to suggest that the immediate effects of low temperatures on CS cells include either decreases in ATP levels, general increases in the passive permeability of membranes, or increased rates of fermentation.  相似文献   

19.
In sea urchin eggs, 10 μg/mL melittin was found to induce fertilization envelope formation without any increase in [Ca2+]i (the intracellular free Ca2+ level). On the other hand, 10 μmol/L Br-A23187 and 100 μg/mL SDS induced fertilization envelope formation associated with [Ca2+]i increase. If EGTA was injected into eggs to make an intracellular concentration of 2 mmol/L, [Ca2+]i became quite low and was not altered by melittin, or by Br-A23187 and SDS. In eggs containing EGTA, fertilization envelope formation was induced by melittin even in Ca2+-free artificial sea water, but not by Br-A23187 or SDS. Thus [Ca2+]i is essential for induction of a fertilization envelope in sea urchin eggs by Br-A23187 or SDS but not by melittin. Melittin probably activates some Ca2+-independent reaction downstream of Ca2+-dependent reactions in a sequential reaction system that finally results in fertilization envelope formation.  相似文献   

20.
After stimulation in a hypotonic solution (9.4 mOsm kg−1), inseminated eggs of the chum salmon Oncorhynchus keta initiate cleavages in isotonic salmon Ringer's solution (267.3 mOsm kg−1) containing 3.2 mM Ca2+ ions. Blastomeres of these eggs, however, separate from each other and the enveloping layer is not observed at the blastula stage. An increase in external divalent cations rescues the separation; the concentration of CaCl2 in the external medium should be 25 mM or more to induce close contact of blastomeres and the formation of an enveloping layer in isotonic salt solutions. The effectiveness of Ca2+ ions can be substituted by Mg2+, Sr2+ and Zn2+ ions; the same results are obtained in isotonic MgCl2 and SrCl2 solutions (100 mM) or in isotonic salmon Ringer's solution containing Zn ions (6.2 mM). The close contact of blastomeres and the formation of an enveloping layer are also observed in a low Ca2+ concentration (< 0.1 mM) in a hypotonic salt solution (9.4 mOsm kg−1). The Ca2+ level in the external medium to induce the enveloping layer formation seems to be correlated with the salinity of the incubation medium. It is suggested that adhesion molecules on the surface of blastomeres in the chum salmon eggs are different in properties from those found in sea urchin and other fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号