首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The apoptosis-defective lpr (fas) mutation in MRL mice causes the early onset of a lupus-like autoimmune disease with concomitant inflammation. In order to analyse the consequences of the impaired Fas-dependent apoptosis on inflammation, the susceptibility to apoptosis of polymorphonuclear leukocytes (PMN), obtained from MRL lpr/lpr mice, has been studied. Peritoneal PMN from lpr/lpr and control (+/+) mice were recruited with a mild inflammatory stimulus. The number of cells collected from the peritoneal cavity of young lpr/lpr mice was comparable to that obtained from age-matched control mice, indicating that PMN homeostasis is maintained regardless of the loss-of-function Fas mutation. Recruited neutrophils were exposed in culture to apoptosis-inducing stimuli. Treatment with agonist anti-Fas antibody increased apoptosis of +/+ PMN, but did not affect lpr/lpr PMN which do not express Fas on their surface. However, lpr/lpr PMN could undergo both spontaneous and stimulus-induced apoptosis in a fashion comparable to or higher than that of control +/+ mice. Analysis of mRNA expression revealed that lpr/lpr PMN have reduced expression of IL-18, whereas IL-1beta, IFNgamma, caspase 1 and caspase 3 are expressed at levels comparable to those of +/+ cells. However, caspase-3-like activity was higher in PMN from lpr/lpr mice than in +/+ cells, and correlated with enhanced apoptosis. It could be concluded that in young, uncompromised lpr/lpr mice, PMN homeostasis is still fully regulated through the involvement of Fas-independent, compensatory, apoptotic mechanisms. This could include an increased participation of caspase 3 in the apoptotic pathway, consequent to enhanced activation of the enzyme and to the decreased production of IL-18, which acts as a competitive caspase 3 substrate.  相似文献   

2.
One of the characteristics of polycystic ovary syndrome (PCOS) is the presence of cystic follicles in various stages of growth and atresia, the latter of which is known to be the result of apoptosis and tissue remodeling. To further investigate the process of follicular atresia, we compared ovarian expression and localization of Fas, Fas ligand (FasL), casapse-8 and membrane-type1 matrix metalloproteinase (MT1-MMP) in rats treated with dehydroepiandrosterone (DHEA) as a model of PCOS, and in control rats. We found that the numbers of TdT-mediated dUTP-biotin nick end-labeling (TUNEL)-positive follicles were significantly higher in ovaries from PCOS rats than in those from control rats (P < 0.05), as were ovarian levels of FasL mRNA and protein, processed caspase-8 protein and MT1-MMP mRNA. Correspondingly, we also observed an increase in the level of MTI-MMP catalytic activity and a decrease in the level of pro-caspase-8 protein. In addition, immunohistochemical analyses showed that MT1-MMP and FasL co-localize with TUNEL-positive apoptotic granulosa cells within atretic follicles of PCOS ovaries. Our results suggest that under the PCOS-like conditions induced by DHEA, the Fas/FasL/Caspase-8 (death receptor dependent) pathway is pivotal for follicular atresia, and that increased levels of MT1-MMP likely play an important role in tissue remodeling during structural luteolysis.  相似文献   

3.
Fas death receptor signalling: roles of Bid and XIAP   总被引:1,自引:0,他引:1  
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.  相似文献   

4.
This study was designed to determine follicular atresia in the newborn and the prepubertal spiny mouse. We analyzed the processes of follicle loss using classical markers of apoptosis (TUNEL reaction, active caspase-3) and autophagy (Lamp1). Numerous small clear vacuoles and autophagosomes as well as strong Lamp1 staining were observed in dying oocytes of all follicle types, especially of the primordial and primary ones. Active caspase 3 and the TUNEL reaction were detected only in the granulosa cells of large secondary and antral follicles. The expression of apoptosis and autophagy markers was also changing during the prepubertal period. Western blot analysis indicated that at the moment of birth, females undergo an increased rate of follicular atresia mediated by autophagy, while apoptosis is the dominant form of ovarian atresia in consecutive postnatal days. On the basis of these observations, we concluded that apoptosis and autophagy are involved in follicular atresia and these processes are cell and developmental stage-specific.  相似文献   

5.
Previously, we analyzed mice lacking either caspase-2 or caspase-3 and documented a role for caspase-2 in developmental and chemotherapy-induced apoptosis of oocytes. Those data also revealed dispensability of caspase-3, although we found this caspase critical for ovarian granulosa cell death. Because of the mutual interdependence of germ cells and granulosa cells, herein we generated caspase-2 and -3 double-mutant (DKO) mice to evaluate how these two caspases functionally relate to each other in orchestrating oocyte apoptosis. No difference was observed in the rate of spontaneous oocyte apoptosis between DKO and wildtype (WT) females. In contrast, the oocytes from DKO females were more susceptible to apoptosis induced by DNA damaging agents, compared with oocytes from WT females. This increased sensitivity to death of DKO oocytes appears to be a specific response to DNA damage, and it was associated with a compensatory upregulation of caspase-12. Interestingly, DKO oocytes were more resistant to apoptosis induced by methotrexate (MTX) than WT oocytes. These results revealed that in female germ cells, insults that directly interfere with their metabolic status (e.g. MTX) require caspase-2 and caspase-3 as obligatory executioners of the ensuing cell death cascade. However, when DNA damage is involved, and in the absence of caspase-2 and -3, caspase-12 becomes upregulated and mediates apoptosis in oocytes. Takai and Matikainen contributed equally to this work.  相似文献   

6.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

7.
Lupus-prone (MRLxC57BL/6) F(1) mice lacking gammadelta T cells show more severe lupus than their T cell-intact counterparts, suggesting that gammadelta T cells down-modulate murine lupus. To determine the mechanisms for this effect, we assessed the capacity of gammadelta T cell lines derived from spleens of alphabeta T cell-deficient MRL/Mp-Fas(lpr) (MRL/Fas(lpr)) mice to down-regulate anti-dsDNA production generated by CD4(+)alphabeta T helper cell lines and activated B cells from wild-type MRL/Fas(lpr) mice. One line, GD12 (gd TCR(+), CD4(-)CD8(-)), had the capacity to reduce anti-dsDNA production in a contact-dependent manner. GD12 also killed activated MRL/Fas(lpr) (H-2(k)) B cells, with less cytolysis of resting B cells than that generated by in comparison to cytokine-matched gammadelta T cell lines. In addition, GD12 also killed activated B cells derived from C57BL/6-Fas(lpr) (H-2(b)) or beta(2)-microglobulin (beta(2) M)-deficient MRL/Fas(lpr) mice, suggesting cytolysis was neither MHC- nor CD1-restricted. Killing by GD12 was inhibited by anti-TNFalpha and anti-TNF-R1, and partially blocked by anti-gd TCR Fab fragments, but not by anti-FasL, anti-TNF-R2 (p75) or concanamycin A. IL-10 produced by GD12 also partially inhibited alphabeta Th1-dependent but not alphabeta Th2-dependent autoantibody production. These findings prove that we have identtified a gammadelta T cell line that suppresses autoantibody synthesis by alphabeta T-B cell collaboration in vitro.  相似文献   

8.
Bovine follicular atresia is associated with the apoptosis of granulosa cells and the subsequent loss of oocyte competence through the reduction of cellular contact (e.g., gap junctions). Several components of the insulin-like growth factor (IGF) system are thought to affect follicular atresia. Whereas the IGF-binding proteins (IGFBPs) are present in varying quantities throughout follicular development, IGFBP-5 appears to be present only during atresia, in parallel with its regulation in other tissue remodeling systems. However, to our knowledge, no connection has yet been made between atresia, low-molecular-weight IGFBP content, and oocyte quality in the bovine ovary. Caspases are actively involved in ovarian follicular atresia, and apoptosis in antral follicles is caspase-3-dependent. Hence, the aim of the present study was to investigate the use of these factors in the assessment of oocyte quality and developmental potential. Oocytes were aspirated, morphologically classified, and individually matured in vitro. The follicular fluid and granulosa cells of these follicles were analyzed for IGFBP profile and caspase-3 activity, respectively. A significant correlation was found between the presence of low-molecular-weight IGFBPs in bovine follicular fluid and caspase-3 activity of granulosa cells isolated from individual follicles. The highest percentage of development to the blastocyst stage was observed in oocytes from slightly atretic follicles. This group of oocytes contained an equal proportion of oocytes at grades 1-3. These data demonstrate that low-molecular-weight IGFBP profile is a more reliable method than the traditional morphological assessment of oocytes and can be used as an effective marker of developmentally competent oocytes. Importantly, these results have implications for the use of noninvasive follicular fluid markers in the selection of competent oocytes to improve outcomes of in vitro fertilization.  相似文献   

9.
Apoptosis plays an important role in the dysfunction of exocrine glands. Fas is a death-inducing receptor found on many types of cells including epithelial acinar cells. To elucidate the intracellular mechanism of Fas-mediated cell death in exocrine glands, an epithelial acinar cell line, SMG-C6, was studied. Caspase-1, -3, -8, and -9 activities were elevated in SMG-C6 cells after the induction of apoptosis by soluble Fas ligand (FasL). The activation of caspase-1 and -8 occurred prior to caspase-3 and -9 activation. The caspase-1 inhibitor, zYVAD-fmk, was effective in preventing cell death, whereas the caspase-3 and -8 inhibitors (ac-DEVD-CHO and ac-IETD-CHO, respectively) were not. zYVAD-fmk was able to inhibit caspase-3 activation indicating that caspase-1 is upstream to caspase-3. Furthermore, kinetic studies show that caspase-1 is an early event in the Fas apoptotic pathway. This study shows that caspase-1 participates in Fas-mediated apoptosis of epithelial cells by initiating the caspase cascade.  相似文献   

10.
The Fas/Fas ligand and mitochondria pathways have been involved in cell death in several cell types. We combined the genetic inactivation of the Fas receptor (lpr mice), on the one hand, to the pharmacological inhibition of the mitochondrial permeability transition pore (mPTP), on the other hand, to investigate which of these pathways is predominantly activated during prolonged ischemia-reperfusion. Anesthetized C57BL/6JICO (control) and C57BL/6-lpr mice were pretreated with either saline or cyclosporin A (CsA; 40 mg/kg, 3 times a day), an inhibitor of the mPTP, and underwent 25 min of ischemia and 24 h of reperfusion. After 24 h of reperfusion, hearts were harvested: infarct size was assessed by 2,3,5-triphenyltetrazolium chloride staining, myocardial apoptosis by caspase 3 activity, and mitochondrial permeability transition by Ca2+-induced mPTP opening using a potentiometric approach. Infarct size was comparable in untreated control and lpr mice, ranging from 77 +/- 5% to 83 +/- 3% of the area at risk. CsA significantly reduced infarct size in control and lpr hearts. Control and lpr hearts exhibited comparable increase in caspase 3 activity that averaged 57 +/- 18 and 49 +/- 5 pmol x min(-1) x mg(-1), respectively. CsA treatment significantly reduced caspase 3 activity in control and lpr hearts. The Ca2+ overload required to open the mPTP was decreased to a similar extent in lpr and controls. CsA significantly attenuated Ca2+-induced mPTP opening in both groups. Our results suggest that the Fas pathway likely plays a minor role, whereas mitochondria are preferentially involved in mice cardiomyocyte death after a lethal ischemia-reperfusion injury.  相似文献   

11.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

12.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

13.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

14.
Caspase-8 (FLICE) can associate with and be activated by CD95 (APO-1/Fas), an apoptosis-inducing member of the Tumour Necrosis Factor receptor family. We find that, in Jurkat T cells, the DNA damaging anti-cancer drug etoposide induces apoptosis and, surprisingly, processing of caspase-8. Therefore, we have investigated whether etoposide involves CD95 receptor activation. We find that etoposide does not induce CD95 ligand expression at the mRNA level. In addition, blocking of CD95 receptor function with a specific antibody does not inhibit etoposide-induced apoptosis. Apparently, in Jurkat cells, etoposide can induce caspase-8 processing and apoptosis in a CD95-independent fashion. Likewise, we find that thymocytes from the CD95-deficient lpr/lpr mouse strain readily undergo apoptosis in response to etoposide. Moreover, since inhibition of the secretory pathway with brefeldin A does not inhibit etoposide-induced apoptosis, we exclude the requirement for a newly synthesizedreceptor ligand to induce the apoptotic pathway. We conclude that, at least in certain cell types, etoposide does not require CD95 receptor function to induce caspase-8 processing and apoptosis.  相似文献   

15.
An adequate vascular supply is important to provide endocrine and paracrine signals during follicular development. We evaluated the direct in vivo effects of both the GnRH-agonist Leuprolide acetate (LA) and the GnRH-antagonist Antide (Ant) on the expression of VEGF-A and ANPT-1 and their receptors in ovarian follicles from prepubertal eCG-treated rats. We also examined whether the changes observed in apoptosis by GnRH-I analogs have an effect on the caspase cascade. LA significantly decreased the levels of VEGF-A, its receptor Flk-1, and ANPT-1 when compared to controls, while the co-injection of Ant interfered with this effect. No changes were observed in the levels of Tie-2 after treatment with these analogs. When we measured the follicular content of caspase-3 protein, we observed that LA significantly increased the level of the active form. The co-injection of Ant interfered with this effect and Ant alone significantly decreased caspase-3 cleavage. IHC analyses corroborated these data. Notably, while LA increased caspase-3 activity levels, Ant decreased them when compared to controls. In follicles obtained from LA-treated rats, cleavage of PARP (a substrate of caspase-3) from the intact 113-kDa protein showed a significant enhancement in an 85-kDa fragment. The co-injection of Ant interfered with this effect. Ant alone significantly decreased PARP cleavage as compared to controls. We conclude that the decrease in VEGF-A, its receptor Flk-1/KDR, and ANPT-1 produced by the administration of GnRH-I agonist is one of the mechanisms involved in ovarian cell apoptosis. This suggests an intraovarian role of an endogenous GnRH-like peptide in gonadotropin-induced follicular development.  相似文献   

16.
MRL/MpJ-Fas(lpr) (MRL-Fas(lpr)) mice develop a spontaneous T cell and macrophage-dependent autoimmune disease that shares features with human lupus. Interactions via the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway down-regulate immune responses and provide a negative regulatory checkpoint in mediating tolerance and autoimmune disease. Therefore, we tested the hypothesis that the PD-1/PD-L1 pathway suppresses lupus nephritis and the systemic illness in MRL-Fas(lpr) mice. For this purpose, we compared kidney and systemic illness (lymph nodes, spleen, skin, lung, glands) in PD-L1 null (-/-) and PD-L1 intact (wild type, WT) MRL-Fas(lpr) mice. Unexpectedly, PD-L1(-/-);MRL-Fas(lpr) mice died as a result of autoimmune myocarditis and pneumonitis before developing renal disease or the systemic illness. Dense infiltrates, consisting of macrophage and T cells (CD8(+) > CD4(+)), were prominent throughout the heart (atria and ventricles) and localized specifically around vessels in the lung. In addition, once disease was evident, we detected heart specific autoantibodies in PD-L1(-/-);MRL-Fas(lpr) mice. This unique phenotype is dependent on MRL-specific background genes as PD-L1(-/-);MRL(+/+) mice lacking the Fas(lpr) mutation developed autoimmune myocarditis and pneumonitis. Notably, the transfer of PD-L1(-/-);MRL(+/+) bone marrow cells induced myocarditis and pneumonitis in WT;MRL(+/+) mice, despite a dramatic up-regulation of PD-L1 expression on endothelial cells in the heart and lung of WT;MRL(+/+) mice. Taken together, we suggest that PD-L1 expression is central to autoimmune heart and lung disease in lupus-susceptible (MRL) mice.  相似文献   

17.
Fas (APO-1/CD95) is an important apoptotic mediator for both immune and nervous systems. In the present study, we have investigated the expression and function of Fas in human embryonic/fetal brain primary cultures from 12 human embryos and fetuses with gestational ages between 5 to 22 weeks. Anti-Fas fluorescent antibody was used for labeling of Fas positive cells and for quantitation of Fas expression in brain cultures. To demonstrate that Fas receptor is functional in human embryonic/fetal brain cells, anti-Human-Fas monoclonal antibody (0.5 μg/ml) was used to induce apoptosis in brain primary cultures. Apoptosis was investigated by flow-cytometry and fluorescent microscopy using TUNEL and annexin V labeling. Fas was found to be expressed in the embryonic/fetal human primary brain cultures, on neuronal and glial cells or their precursors, varying with gestational ages. Cross-linking of Fas induced apoptosis in brain cultures indicating that Fas receptor functions as a death receptor. We also showed that cell death triggered through Fas receptor was caspase dependent, hence it was blocked by a selective caspase-8 inhibitor (IETD-fmk).These results suggest that Fas is involved in neuronal apoptosis in the developing human brain.  相似文献   

18.
In humans, the molecular mechanisms underlying ovarian follicle endowment and activation, which are closely related to the control of female reproduction, occurrence of menopause, and related diseases such as premature ovarian failure, are poorly understood. In the current study, we provide several lines of genetic evidence that the cyclin-dependent kinase (Cdk) inhibitor 1B (commonly known as p27(kip1) or p27) controls ovarian development in mice by suppressing follicle endowment and activation, and by promoting follicle death. In p27-deficient (p27(-/-)) mice, postnatal follicle assembly was accelerated, and the number of endowed follicles was doubled as compared with p27(+/+) mice. Moreover, in p27(-/-) ovaries the primordial follicle pool was prematurely activated once it was endowed, and at the same time the massive follicular death that occurs before sexual maturity was rescued by loss of p27. In early adulthood, however, the overactivated follicular pool in p27(-/-) ovaries was largely depleted, causing premature ovarian failure. Furthermore, we have extensively studied the molecular mechanisms underlying the above-mentioned phenotypes seen in p27(-/-) ovaries and have found that p27 controls follicular development by several distinct mechanisms at different stages of development of the ovary. For example, p27 controls oocyte growth by suppressing the functions of Cdk2/Cdc2-cyclin A/E1 in oocytes that are arrested at the diplotene stage of meiosis I. This function of p27 is distinct from its well-known role as a suppressor of cell cycle progression. In addition, we have found that p27 activates the caspase-9-caspase-3-caspase-7-poly (ADP-ribose) polymeraseapoptotic cascade by inhibiting Cdk2/Cdc2-cyclin A/B1 kinase activities in follicles, thereby inducing follicle atresia. Our results suggest that the p27 gene is important in determining mammalian ovarian development. This study therefore provides insight into ovary-borne genetic aberrations that cause defects in folliculogenesis and infertility in humans.  相似文献   

19.
In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown.  相似文献   

20.
Homozygous MRL/Mp-1pr/1pr (MRL/1pr) mice, which have an autosomal recessive mutant 1pr gene and exhibit defects in Fas antigen, spontaneously develop autoimmune disease with progressive expansion and accumulation of characteristic abnormal CD4-CD8-double negative T cells that express B220 surface antigen, a B cell-specific surface marker in normal mice. We analyzed the distribution and age related changes of lpr gene-induced abnormal T cells (B220-positive lpr T cells) In the lymphoid organs of MRL/1pr mice. We studied cryostat sections of the spleen, peripheral lymph nodes, mesenteric lymph nodes, and Peyer's patches at different stages using FITC (fluorescein isothiocyanate)-conjugated monoclonal antibodies directed against B220 (RA3-6B2) and PE (phycoerythrin)-conjugated anti-mouse CD3 (2C11) monoclonal antibody, examining dual-exposure microphotographs of double-immunofluorescence stained preparations. We observed that in aged MRL/lpr mice, B220-positive abnormal 1pr T cells were not present in the thymus-dependent area, and the majority of the follicular area cells were displaced by 1pr T cells. These findings suggest that the cellular trafficking of B220-positive lpr T cells differs from that of conventional T cells and that these 1pr-derived T cells play a role in the follicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号