首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reimann JD  Freed E  Hsu JY  Kramer ER  Peters JM  Jackson PK 《Cell》2001,105(5):645-655
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion from cycling Xenopus extracts strongly delays cyclin B accumulation and mitotic entry, whereas nondestructible Emi1 stabilizes APC substrates and causes a mitotic block. Emi1 binds the APC activator Cdc20, and Cdc20 can rescue an Emi1-induced block to cyclin B destruction. Our results suggest that Emi1 regulates progression through early mitosis by preventing premature APC activation, and may help explain the well-known delay between cyclin B/Cdc2 activation and cyclin B destruction.  相似文献   

3.
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.  相似文献   

4.
Both chromosome segregation and the final exit from mitosis require a ubiquitin-protein ligase called anaphase-promoting complex (APC) or cyclosome. This multiprotein complex ubiquitinates various substrates, such as the anaphase inhibitor Pds1 and mitotic cyclins, and thus targets them for proteolysis by the 26S proteasome. The ubiquitination by APC is dependent on the presence of a destruction-box sequence in the N-terminus of target proteins. Recent reports have strongly suggested that Cdc20, a WD40 repeat-containing protein required for nuclear division in the budding yeast Saccharomyces cerevisiae, is essential for the APC-mediated proteolysis. To understand the function of CDC20, we have studied its regulation in some detail. The expression of the CDC20 gene is cell-cycle regulated such that it is transcribed only during late S phase and mitosis. Although the protein is unstable to some extent through out the cell cycle, its degradation is particularly enhanced in G1. Cdc20 contains a destruction box sequence which, when mutated or deleted, stabilizes it considerably in G1. Surprisingly, we find that while the inactivation of APC subunits Cdc16, Cdc23 or Cdc27 results in stabilization of the mitotic cyclin Clb2 in G1, the proteolytic destruction of Cdc20 remains largely unaffected. This suggests the existence of proteolytic mechanisms in G1 that can degrade destruction-box containing proteins, such as Cdc20, in an APC-independent manner.  相似文献   

5.
Background: Accurate chromosome segregation during mitosis requires the coordinated destruction of the mitotic regulators securin and cyclins. The anaphase-promoting complex (APC) is a multisubunit ubiquitin-protein ligase that catalyzes the polyubiquitination of these and other proteins and thereby promotes their destruction. How the APC recognizes its substrates is not well understood. In mitosis, the APC activator Cdc20 binds to the APC and is thought to recruit substrates by interacting with a conserved target protein motif called the destruction box. A related protein, called Cdh1, performs a similar function during G1. Recent evidence, however, suggests that the core APC subunit Doc1 also contributes to substrate recognition. Results: To better understand the mechanism by which Doc1 promotes substrate binding to the APC, we generated a series of point mutations in Doc1 and analyzed their effects on the processivity of substrate ubiquitination. Mutations that reduce Doc1 function fall into two classes that define spatially and functionally distinct regions of the protein. One region, which includes the carboxy terminus, anchors Doc1 to the APC but does not influence substrate recognition. The other region, located on the opposite face of Doc1, is required for Doc1 to enhance substrate binding to the APC. Importantly, stimulation of binding by Doc1 also requires that the substrate contain an intact destruction box. Cells carrying DOC1 mutations that eliminate substrate recognition delay in mitosis with high levels of APC substrates. Conclusions: Doc1 contributes to recognition of the substrate destruction box by the APC. This function of Doc1 is necessary for efficient substrate proteolysis in vivo.  相似文献   

6.
We have found that key mitotic regulators show distinct patterns of degradation during exit from mitosis in human cells. Using a live-cell assay for proteolysis, we show that two of these regulators, polo-like kinase 1 (Plk1) and Aurora A, are degraded at different times after the anaphase-promoting complex/cyclosome (APC/C) switches from binding Cdc20 to Cdh1. Therefore, events in addition to the switch from Cdc20 to Cdh1 control the proteolysis of APC/C(Cdh1) substrates in vivo. We have identified a putative destruction box in Plk1 that is required for degradation of Plk1 in anaphase, and have examined the effect of nondegradable Plk1 on mitotic exit. Our results show that Plk1 proteolysis contributes to the inactivation of Plk1 in anaphase, and that this is required for the proper control of mitotic exit and cytokinesis. Our experiments reveal a role for APC/C-mediated proteolysis in exit from mitosis in human cells.  相似文献   

7.
Ubiquitin-mediated proteolysis is critical for the alternation between DNA replication and mitosis and for the key regulatory events in mitosis. The anaphase-promoting complex/cyclosome (APC/C) is a conserved ubiquitin ligase that has a fundamental role in regulating mitosis and the cell cycle in all eukaryotes. In vertebrate cells, early mitotic inhibitor 1 (Emi1) has been proposed as an important APC/C inhibitor whose destruction may trigger activation of the APC/C at mitosis. However, in this study, we show that the degradation of Emi1 is not required to activate the APC/C in mitosis. Instead, we uncover a key role for Emi1 in inhibiting the APC/C in interphase to stabilize the mitotic cyclins and geminin to promote mitosis and prevent rereplication. Thus, Emi1 plays a crucial role in the cell cycle to couple DNA replication with mitosis, and our results also question the current view that the APC/C has to be inactivated to allow DNA replication.  相似文献   

8.
The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti‐apoptotic protein Mcl‐1 is regulated during the cell cycle and peaks at mitosis. Mcl‐1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin‐dependent kinase 1 (CDK1)–cyclin B1 initiates degradation of Mcl‐1 in cells arrested in mitosis by microtubule poisons. Mcl‐1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase‐promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl‐1 during mitotic arrest by mutation of either Thr92 or a D‐box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl‐1 by CDK1–cyclin B1 and its APC/CCdc20‐mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.  相似文献   

9.
Proteolytic destruction of many cyclins is induced by a multi-subunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C). In the budding yeast Saccharomyces cerevisiae, the S phase cyclin Clb5 and the mitotic cyclins Clb1-4 are known as substrates of this complex. The relevance of APC/C in proteolysis of Clb5 is still under debate. Importantly, a deletion of the Clb5 destruction box has little influence on cell cycle progression. To understand Clb5 degradation in more detail, we applied in vivo pulse labeling to determine the half-life of Clb5 at different cell cycle stages and in the presence or absence of APC/C activity. Clb5 is significantly unstable, with a half-life of approximately 8-10 min, at cell cycle periods when APC/C is inactive and in mutants impaired in APC/C function. A Clb5 version lacking its cyclin destruction box is similarly unstable. The half-life of Clb5 is further decreased in a destruction box-dependent manner to 3-5 min in mitotic or G(1) cells with active APC/C. Clb5 instability is highly dependent on the function of the proteasome. We conclude that Clb5 proteolysis involves two different modes for targeting of Clb5 to the proteasome, an APC/C-dependent and an APC/C-independent mechanism. These different modes apparently have overlapping functions in restricting Clb5 levels in a normal cell cycle, but APC/C function is essential in the presence of abnormally high Clb5 levels.  相似文献   

10.
11.
Jacobs HW  Keidel E  Lehner CF 《The EMBO journal》2001,20(10):2376-2386
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.  相似文献   

12.
Ubiquitin-mediated proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for sister chromatid separation and the mitotic exit. Like ubiquitylation, protein modification with the small ubiquitin-related modifier SUMO appears to be important during mitosis, because yeast cells impaired in the SUMO-conjugating enzyme Ubc9 were found to be blocked in mitosis and defective in cyclin degradation. Here, we analysed the role of SUMOylation in the metaphase/anaphase transition and in APC/C-mediated proteolysis in Saccharomyces cerevisiae. We show that cells depleted of Ubc9 or Smt3, the yeast SUMO protein, mostly arrested with undivided nuclei and with high levels of securin Pds1. This metaphase block was partially relieved by a deletion of PDS1. The absence of Ubc9 or Smt3 also resulted in defects in chromosome segregation. Temperature-sensitive ubc9-2 mutants were delayed in proteolysis of Pds1 and of cyclin Clb2 during mitosis. The requirement of SUMOylation for APC/C-mediated degradation was tested more directly in G1-arrested cells. Both ubc9-2 and smt3-331 mutants were defective in efficient degradation of Pds1 and mitotic cyclins, whereas proteolysis of unstable proteins that are not APC/C substrates was unaffected. We conclude that SUMOylation is needed for efficient proteolysis mediated by APC/C in budding yeast.  相似文献   

13.
The initiation of apoptosis in response to the disruption of mitosis provides surveillance against chromosome instability. Here, we show that proteolytic destruction of the key regulator Mcl‐1 during an extended mitosis requires the anaphase‐promoting complex or cyclosome (APC/C) and is independent of another ubiquitin E3 ligase, SCFFbw7. Using live‐cell imaging, we show that the loss of Mcl‐1 during mitosis is dependent on a D box motif found in other APC/C substrates, while an isoleucine‐arginine (IR) C‐terminal tail regulates the manner in which Mcl‐1 engages with the APC/C, converting Mcl‐1 from a Cdc20‐dependent and checkpoint‐controlled substrate to one that is degraded independently of checkpoint strength. This mechanism ensures a relatively slow but steady rate of Mcl‐1 degradation during mitosis and avoids its catastrophic destruction when the mitotic checkpoint is satisfied, providing an apoptotic timer that can distinguish a prolonged mitotic delay from normal mitosis. Importantly, we also show that inhibition of Cdc20 promotes mitotic cell death more effectively than loss of APC/C activity through differential effects on Mcl‐1 degradation, providing an improved strategy to kill cancer cells.  相似文献   

14.
The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.  相似文献   

15.
Proteolysis mediated by the anaphase promoting complex (APC) has a crucial role in regulating the passage of cells through anaphase. Destruction of the anaphase inhibitor Pds1p is necessary for separation of sister chromatids, whereas destruction of the mitotic cyclin Clb2p is important for disassembly of the mitotic spindle, cytokinesis and re-replication of the genome. Pds1p proteolysis precedes that of Clb2p by at least 15 min, which helps to ensure that cells never re-replicate their genome before they have separated sister chromatids at the previous mitosis. What triggers Pds1p proteolysis and why does it not also trigger that of Clb2p? Apart from sharing a dependence on the APC, these two proteolytic events differ in their dependence on other cofactors. Pds1p proteolysis depends on a WD-repeat protein called Cdc20p, whereas Clb2p proteolysis depends on another, related WD protein called Hct1/Cdh1p. On the other hand, destruction of Clb2p, but not that of Pds1p, depends on the Polo-like kinase, Cdc5p. Cdc20p is essential for separation of sister chromatids, whereas Cdc5p is not. We show that both Cdc5p and Cdc20p are unstable proteins whose proteolysis is regulated by the APC. Both proteins accumulate during late G2/M phase and disappear at a late stage of anaphase. Accumulation of Cdc20p contributes to activation of Pds1p proteolysis in metaphase, whereas accumulation of Cdc5p facilitates the activation of Clb2p proteolysis.  相似文献   

16.
It is widely assumed that mitotic cyclins are rapidly degraded during anaphase, leading to the inactivation of the cell cycle-dependent protein kinase Cdc2 and allowing exit from mitosis. The proteolysis of mitotic cyclins is ubiquitin/26S proteasome mediated and requires the presence of the destruction box motif at the N terminus of the proteins. As a first attempt to study cyclin proteolysis during the plant cell cycle, we investigated the stability of fusion proteins in which the N-terminal domains of an A-type and a B-type tobacco mitotic cyclin were fused in frame with the chloramphenicol acetyltransferase (CAT ) reporter gene and constitutively expressed in transformed tobacco BY2 cells. For both cyclin types, the N-terminal domains led the chimeric cyclin-CAT fusion proteins to oscillate in a cell cycle-specific manner. Mutations within the destruction box abolished cell cycle-specific proteolysis. Although both fusion proteins were degraded after metaphase, cyclin A-CAT proteolysis was turned off during S phase, whereas that of cyclin B-CAT was turned off only during the late G2 phase. Thus, we demonstrated that mitotic cyclins in plants are subjected to post-translational control (e.g., proteolysis). Moreover, we showed that the proteasome inhibitor MG132 blocks BY2 cells during metaphase in a reversible way. During this mitotic arrest, both cyclin-CAT fusion proteins remained stable.  相似文献   

17.
Substrates for mitotic proteolysis such as cyclin B have a 9 residue destruction motif, the destruction box (D-box). To identify the receptor that specifically binds the D-box, we used affinity chromatography with immobilized D-box matrices. We find that the APC/C from Xenopus egg extracts binds to the D-box of cyclin B, whereas Fizzy (Cdc20) does not. Mutations in the D-box abolished this interaction. We show that this binding is regulated in the cell cycle, such that the APC/C from egg extracts in interphase does not bind to the D-box matrix. Our results suggest that the APC/C forms a stable interaction with the D-box of its substrates in a cell cycle-dependent manner.  相似文献   

18.
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1's DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.  相似文献   

19.
Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity of ubiquitination sites, as another possible regulated dimension, has not yet been explored. Here, we present the first analysis of ubiquitination sites in the APC/C substrate ubiquitome. We show that KEN is a preferred ubiquitin acceptor in APC/C substrates and that acceptor sites are enriched in predicted disordered regions and flanked by serine residues. Our experimental data confirm a role for the KEN lysine as an ubiquitin acceptor contributing to substrate destruction during mitotic progression. Using Aurora A and Nek2 kinases as examples, we show that phosphorylation on the flanking serine residue could directly regulate ubiquitination and subsequent degradation of substrates. We propose a novel layer of regulation in substrate ubiquitination, via phosphorylation adjacent to the KEN motif, in APC/C-mediated targeting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号