首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A large body of evidence indicates that chronic obstructive pulmonary disorder (COPD) is accompanied by oxidative stress and inflammatory and genetic pathways. Epidemiological studies indicate that COPD is a major cause of mortality and morbidity in the world. Recent research development in COPD focuses on accelerated aging and various oxidative stress biomarkers. It involves the clinical manifestation of the disease process and may also contain biochemical, immunological, physiological, morphological, and genetic aspects that add to the progressiveness of the disease. Herein, we summarize findings that highlight the role of dimensions of COPD in the investigation of oxidative stress, inflammatory responses, genetic and epigenetic studies, and pharmacological and dietary antioxidant intervention.  相似文献   

4.
5.
Expansion of human stem cells before cell therapy is typically performed at 20% O(2). Growth in these pro-oxidative conditions can lead to oxidative stress and genetic instability. Here, we demonstrate that culture of human mesenchymal stem cells at lower, physiological O(2) concentrations significantly increases lifespan, limiting oxidative stress, DNA damage, telomere shortening and chromosomal aberrations. Our gene expression and bioenergetic data strongly suggest that growth at reduced oxygen tensions favors a natural metabolic state of increased glycolysis and reduced oxidative phosphorylation. We propose that this balance is disturbed at 20% O(2), resulting in abnormally increased levels of oxidative stress. These observations indicate that bioenergetic pathways are intertwined with the control of lifespan and decisively influence the genetic stability of human primary stem cells. We conclude that stem cells for human therapy should be grown under low oxygen conditions to increase biosafety.  相似文献   

6.
Oxidative stress was recently demonstrated to affect several fitness‐related traits and is now well recognized to shape animal life‐history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross‐sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free‐living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross‐sex genetic correlation in offspring resistance to oxidative stress by performing a split‐nest cross‐fostering experiment where 155 broods were split, and all siblings (n = 791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free‐radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross‐sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life.  相似文献   

7.
Intense exposure to light, robust metabolic activity, and high oxygen tension render the human eye particularly vulnerable to oxidative damage and the list of ophthalmological disorders implicating reactive oxygen and nitrogen species is rapidly expanding. Here, we review the roles of oxidative stress in the etiopathogeneses and pathophysiology of diseases of the human cornea including pterygium, keratoconus, trauma and chemical injury, and a host of inflammatory, metabolic, degenerative, and iatrogenic conditions. Data from animal and tissue culture experimentation germane to these conditions are also adduced.  相似文献   

8.
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging – the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase ( HMGCR ) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR , a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD.  相似文献   

9.
One of distinct genetic alterations in spontaneously immortalized DF-1 cells was found to be dysfunction of p53 and E2F-1 as well as altered antioxidant gene expression (upregulation of MnSOD and downregulation of catalase). We have characterized the cellular responses of primary and immortal DF-1 cells to oxidative stress and found that DF-1 cells were more sensitive to oxidative stress than their primary counterparts when treated with antimycin A. The increased DF-1 cell death by oxidative stress was accompanied by an increase in the levels of intracellular superoxide anions and hydrogen peroxide. The cell death in DF-1 cells by antimycin A showed none of the hallmarks of apoptosis, but displayed a significantly increased necrotic cell population. Anti-apoptotic Bcl-2 failed to inhibit oxidative-induced necrotic cell death in the DF-1 cells. However, this necrotic cell death was significantly decreased by treatment with hydrogen peroxide scavengers such as sodium pyruvate and N-acetyl-cysteine. Interestingly, overexpression of human catalase in DF-1 cells endowed cells resistant to the oxidative stress by antimycin A treatment, although the downregulation of MnSOD by an antisense strategy showed no evident change in the cytotoxic effect caused by antimycin A. Taken together, the present study might provide new therapeutic approach for tumor cells having the loss of p53 function and the altered antioxidant functions.  相似文献   

10.
The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose–response, challenging long-standing beliefs about the nature of the dose–response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.  相似文献   

11.
Cryptococcus neoformans is a human fungal pathogen that survives exposure to stresses during growth in the human host, including oxidative and nitrosative stress, high temperature, hypoxia, and nutrient deprivation. There have been many genes implicated in resistance to individual stresses. Notably, the catalases do not have the expected role in resistance to external oxidative stress, but specific peroxidases appear to be critical for resistance to both oxidative and nitrosative stresses. Signal transduction through the HOG1 and calcineurin/calmodulin pathways has been implicated in the stress response. Microarray and proteomic analyses have indicated that the common responses to stress are induction of metabolic and oxidative stress genes, and repression of genes encoding translational machinery.  相似文献   

12.
Endoplasmic reticulum (ER)-induced apoptosis and oxidative stress contribute to several chronic disease processes, yet molecular and cellular mechanisms linking ER stress and oxidative stress in the setting of apoptosis are poorly understood and infrequently explored in vivo. In this paper, we focus on a previously elucidated ER stress-apoptosis pathway whose molecular components have been identified and documented to cause apoptosis in vivo. We now show that nicotinamide adenine dinucleotide phosphate reduced oxidase (NOX) and NOX-mediated oxidative stress are induced by this pathway and that apoptosis is blocked by both genetic deletion of the NOX subunit NOX2 and by the antioxidant N-acetylcysteine. Unexpectedly, NOX and oxidative stress further amplify CCAAT/enhancer binding protein homologous protein (CHOP) induction through activation of the double-stranded RNA-dependent protein kinase (PKR). In vivo, NOX2 deficiency protects ER-stressed mice from renal cell CHOP induction and apoptosis and prevents renal dysfunction. These data provide new insight into how ER stress, oxidative stress, and PKR activation can be integrated to induce apoptosis in a pathophysiologically relevant manner.  相似文献   

13.
14.
Aging is an inherently complex process that is manifested within an organism at genetic, molecular, cellular, organ, and system levels. Although the fundamental mechanisms are still poorly understood, a growing body of evidence points toward reactive oxygen species (ROS) as one of the primary determinants of aging. The "oxidative stress theory" holds that a progressive and irreversible accumulation of oxidative damage caused by ROS impacts on critical aspects of the aging process and contributes to impaired physiological function, increased incidence of disease, and a reduction in life span. While compelling correlative data have been generated to support the oxidative stress theory, a direct cause-and-effect relationship between the accumulation of oxidatively mediated damage and aging has not been strongly established. The goal of this minireview is to broadly describe mechanisms of in vivo ROS generation, examine the potential impact of ROS and oxidative damage on cellular function, and evaluate how these responses change with aging in physiologically relevant situations. In addition, the mounting genetic evidence that links oxidative stress to aging is discussed, as well as the potential challenges and benefits associated with the development of anti-aging interventions and therapies.  相似文献   

15.
16.
17.
Sulfation of nitrotyrosine: biochemistry and functional implications   总被引:1,自引:0,他引:1  
Liu MC  Yasuda S  Idell S 《IUBMB life》2007,59(10):622-627
Nitration of tyrosine, in both protein-bound form and free amino acid form, can readily occur in cells under oxidative/nitrative stress. In addition to serving as a biomarker of oxidative/nitrative stress, elevated levels of nitrotyrosine have been shown to cause DNA damage or trigger apoptosis. An important issue is whether the human body is equipped with mechanisms to counteract the potentially harmful effects of nitrotyrosine. Sulfate conjugation, as mediated by the cytosolic sulfotransferases (SULTs), is widely used for the biotransformation and disposal of a variety of drugs and other xenobiotics, as well as endogenous thyroid/steroid hormones and catecholamine neurotransmitters. Recent studies have revealed that the sulfation of nitrotyrosine occurs in cells under oxidative/nitrative stress, and have pinpointed the SULT1A3 as the responsible SULT enzyme. In this review, we summarized the available information concerning the biochemistry of nitrotyrosine sulfation and the effects of genetic polymorphisms on the nitrotyrosine sulfating activity of SULT1A3. Functional implications of the sulfation of nitrotyrosine are discussed.  相似文献   

18.
Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control ROS production, one of the central elements in signal transduction pathways involved in cell proliferation, differentiation and apoptosis. Antioxidants also ensure defenses against ROS-induced damage to lipids, proteins and DNA. ROS and antioxidants have been implicated in the regulation of reproductive processes in both animal and human, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, embryonic implantation, and placental differentiation and growth. In contrast, imbalances between ROS production and antioxidant systems induce oxidative stress that negatively impacts reproductive processes. High levels of ROS during embryonic, fetal and placental development are a feature of pregnancy. Consequently, oxidative stress has emerged as a likely promoter of several pregnancy-related disorders, such as spontaneous abortions, embryopathies, preeclampsia, fetal growth restriction, preterm labor and low birth weight. Nutritional and environmental factors may contribute to such adverse pregnancy outcomes and increase the susceptibility of offspring to disease. This occurs, at least in part, via impairment of the antioxidant defense systems and enhancement of ROS generation which alters cellular signalling and/or damage cellular macromolecules. The links between oxidative stress, the female reproductive system and development of adverse pregnancy outcomes, constitute important issues in human and animal reproductive medicine. This review summarizes the role of ROS in female reproductive processes and the state of knowledge on the association between ROS, oxidative stress, antioxidants and pregnancy outcomes in different mammalian species.  相似文献   

19.
Reactive oxygen species are toxic byproducts of aerobic respiration that are also important in mediating a diversity of cellular functions. Reactive oxygen species form an important component of plant defenses to inhibit microbial pathogens during pathogen–plant interactions. Tolerance to oxidative stress is likely to make a significant contribution to the viability and pathogenicity of plant pathogens, but the complex network of oxidative stress responses hinders identification of the genes contributing to this trait. Here, we employed a forward genetic approach to investigate the genetic architecture of oxidative stress tolerance in the fungal wheat pathogen Zymoseptoria tritici. We used quantitative trait locus (QTL) mapping of growth and melanization under axenic conditions in two cross-populations to identify genomic regions associated with tolerance to oxidative stress. We found that QTLs associated with growth under oxidative stress as well as inherent growth can affect oxidative stress tolerance, and we identified two uncharacterized genes in a major QTL associated with this trait. Our data suggest that melanization does not affect tolerance to oxidative stress, which differs from what was found for animal pathogens. This study provides a whole-genome perspective on the genetic basis of oxidative stress tolerance in a plant pathogen.  相似文献   

20.
Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号