首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type III secretion (T3S) is utilized by a wide range of gram-negative bacterial pathogens to allow the efficient delivery of effector proteins into the host cell cytoplasm through the use of a syringe-like injectisome. Chlamydophila pneumoniae is a gram-negative, obligate intracellular pathogen that has the structural genes coding for a T3S system, but the functionality of the system has not yet been demonstrated. T3S is dependent on ATPase activity, which catalyzes the unfolding of proteins and the secretion of effector proteins through the injectisome. CdsN (Cpn0707) is predicted to be the T3S ATPase of C. pneumoniae based on sequence similarity to other T3S ATPases. Full-length CdsN and a C-terminal truncation of CdsN were cloned as glutathione S-transferase (GST)-tagged constructs and expressed in Escherichia coli. The GST-tagged C-terminal truncation of CdsN possessed ATPase activity, catalyzing the release of ADP and P(i) from ATP at a rate of 0.55 +/- 0.07 micromol min(-1) mg(-1) in a time- and dose-dependent manner. CdsN formed oligomers and high-molecular-weight multimers, as assessed by formaldehyde fixation and nondenaturing polyacrylamide gel electrophoresis. Using bacterial two-hybrid and GST pull-down assays, CdsN was shown to interact with CdsD, CdsL, CdsQ, and CopN, four putative structural components of the C. pneumoniae T3S system. CdsN also interacted with an unannotated protein, Cpn0706, a putative CdsN chaperone. Interactions between CdsN, CdsD, and CopN represent novel interactions not previously reported for other bacterial T3S systems and may be important in the localization and/or function of the ATPase at the inner membrane of C. pneumoniae.  相似文献   

2.
Type III secretion (T3S) is an essential virulence factor used by gram-negative pathogenic bacteria to deliver effector proteins into the host cell to establish and maintain an intracellular infection. Chlamydia is known to use T3S to facilitate invasion of host cells but many proteins in the system remain uncharacterized. The C. trachomatis protein CT584 has previously been implicated in T3S. Thus, we analyzed the CT584 ortholog in C. pneumoniae (Cpn0803) and found that it associates with known T3S proteins including the needle-filament protein (CdsF), the ATPase (CdsN), and the C-ring protein (CdsQ). Using membrane lipid strips, Cpn0803 interacted with phosphatidic acid and phosphatidylinositol, suggesting that Cpn0803 may associate with host cells. Crystallographic analysis revealed a unique structure of Cpn0803 with a hydrophobic pocket buried within the dimerization interface that may be important for binding small molecules. Also, the binding domains on Cpn0803 for CdsN, CdsQ, and CdsF were identified using Pepscan epitope mapping. Collectively, these data suggest that Cpn0803 plays a role in T3S.  相似文献   

3.
We characterized Orf5 and SepQ, two type III secretion (T3S) system proteins in enteropathogenic Escherichia coli, and showed that they are essential for T3S, associated with the bacterial membrane, and interact with EscN. Our findings suggest that Orf5 and SepQ are homologs of YscL and YscQ from Yersinia, respectively.  相似文献   

4.
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.  相似文献   

5.
The assembly of the Yersinia enterocolitica type III secretion injectisome was investigated by grafting fluorescent proteins onto several components, YscC (outer‐membrane (OM) ring), YscD (forms the inner‐membrane (IM) ring together with YscJ), YscN (ATPase), and YscQ (putative C ring). The recombinant injectisomes were functional and appeared as fluorescent spots at the cell periphery. Epistasis experiments with the hybrid alleles in an array of injectisome mutants revealed a novel outside‐in assembly order: whereas YscC formed spots in the absence of any other structural protein, formation of YscD foci required YscC, but not YscJ. We therefore propose that the assembly starts with YscC and proceeds through the connector YscD to YscJ, which was further corroborated by co‐immunoprecipitation experiments. Completion of the membrane rings allowed the subsequent assembly of cytosolic components. YscN and YscQ attached synchronously, requiring each other, the interacting proteins YscK and YscL, but no further injectisome component for their assembly. These results show that assembly is initiated by the formation of the OM ring and progresses inwards to the IM ring and, finally, to a large cytosolic complex.  相似文献   

6.
Interactions among the Yersinia secretion (Ysc) proteins of Yersinia pestis were explored using the yeast two-hybrid system. Various pairwise combinations of the yscEFGHIKLN and Q genes fused to the DNA-binding or activation domain of the yeast GAL4 gene were introduced into yeast, and expression of a reporter gene encoding beta-galactosidase was detected. Combinations of yscN and yscL, yscL and yscQ, and yscQ and yscK resulted in high levels of reporter gene activation. These results suggest that YscL interacts with both YscN and YscQ, and that YscQ interacts with both YscL and YscK. Three-hybrid analyses using plasmid pDELA to target a third hybrid protein to the yeast nucleus was used to detect the formation of ternary protein complexes. Using the three-hybrid system, YscQ expressed from plasmid pDELA was able to bring together the YscK and YscL fusion proteins. In a similar manner, YscL expressed from plasmid pDELA was able to bring together the YscN and YscQ fusion proteins. Together, these results suggest that a complex composed of YscN, YscQ, YscK and YscL is involved in the assembly and/or function of the Y. pestis type III secretion apparatus.  相似文献   

7.
The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ?CPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ?CPAR39 infection. Using immunofluorescence laser confocal microscopy and two-dimensional gel electrophoresis, we investigated the ?CPAR39 infection of C. pneumoniae AR39. It was observed that ?CPAR39 infection differentially suppressed the C. pneumoniae protein synthesis as the polymorphic membrane protein 10 and the secreted chlamydial protein Cpn0796 was hardly expressed while the secreted chlamydial protein Cpaf was expressed, but not secreted. The inclusion membrane protein, IncA, was demonstrated to surround the phage-infected abnormal reticulate bodies (RB) as well as being located in the inclusion membrane. As IncA is secreted by the type 3 secretion (T3S) system, it is likely that the T3S is disrupted in the phage-infected chlamydiae such that it accumulates around the infected RB.  相似文献   

8.
Chlamydia spp. exhibit a unique biphasic developmental cycle whereby infectious elementary bodies (EBs) invade host epithelial cells and differentiate into noninfectious, metabolically active reticulate bodies (RBs). EBs posses a unique outer envelope where rigidity is achieved by disulfide bonding among cysteine-rich envelope-associated proteins. Conversely, these disulfide bonds become reduced in RBs to accommodate vegetative growth, thereby linking the redox status of cysteine-rich envelope proteins with progression of the developmental cycle. We investigated the potential role of disulfide bonding within the chlamydial type III secretion system (T3SS), since activity of this system is also closely linked to development. We focused on structural components of the T3S apparatus that contain an unusually high number of cysteine residues compared to orthologs in other secretion systems. Nonreducing SDS-PAGE revealed that EB-localized apparatus proteins such as CdsF, CdsD, and CdsC form higher-order complexes mediated by disulfide bonding. The most dramatic alterations were detected for the needle protein CdsF. Significantly, disulfide bonding patterns shifted during differentiation of developmental forms and were completely reduced in RBs. Furthermore, at later time points during infection following RB to EB conversion, we found that CdsF is reoxidized into higher-order complexes. Overall, we conclude that the redox status of specific T3SS apparatus proteins is intimately linked to the developmental cycle and constitutes a newly appreciated aspect of functionally significant alterations within proteins of the chlamydial envelope.  相似文献   

9.
By comparison of proteome profiles of purified Chlamydia pneumoniae and whole lysates of C. pneumoniae infected HEp-2 cells, an N-terminal fragment of the previously uncharacterized chlamydial protein Cpn0796 was identified as a secreted protein. A 38 kDa cleavage product of Cpn0796 was present in infected cells, whereas only the 65 kDa full-length Cpn0796 could be detected in purified Chlamydia. Confocal immunofluorescence microscopy demonstrated that Cpn0796 was localized in the Chlamydia membrane in young inclusions. However, at 36 h post infection and later Cpn0796 was detected in the cytoplasm of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N-terminal of which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were found to be secreted.  相似文献   

10.
The type III secretion system (T3SS) is required for the virulence of many gram‐negative bacterial human pathogens. It is composed of several structural proteins, forming the secretion needle and its basis, the basal body. In Chlamydia spp., the T3SS inner membrane ring (IM‐ring) of the basal body is formed by the periplasmic part of CdsD (outer ring) and CdsJ (inner ring). Here we describe the crystal structure of the C‐terminal, periplasmic part of CdsD, not including the last 60 residues. Two crystal forms were obtained, grown in three different crystallization conditions. In both crystal forms there is one molecule per asymmetric unit adopting a similar extended structure. The structures consist of three periplasmic domains (PDs) of similar αββαβ topology as seen also in the structures of the homologous PrgH (Salmonella typhimurium) and YscD (Yersinia enterocolitica). Only in the C2 crystal form, there is a C‐terminal additional helix after the PD3 domain. The relative orientation of the three subsequent CdsD PD domains with respect to each other is more extended than in PrgH but less extended than in YscD. Small‐angle X‐ray scattering data show that also in solution this CdsD construct adopts the same elongated shape. In both crystal forms the CdsD molecules are packed in a parallel fashion, using translational crystallographic symmetry. The most extensive crystal contacts are preserved in both crystal forms, suggesting a possible mode of assembly of the CdsD periplasmic part into a 24‐mer complex forming the outer ring of the IM‐ring of the T3SS.  相似文献   

11.
12.
前S1蛋白(PreS1)在乙型肝炎病毒与宿主的相互作用中起至关重要的作用.为筛选乙型肝炎病毒PreS1结合蛋白,进一步探讨其在病毒感染过程中的作用,原核表达、纯化了PreS1-谷胱甘肽-S-转移酶(glutathione-S-transferase,GST)融合蛋白,利用此蛋白与HepG2细胞裂解液进行Pull-down实验,其产物进行双向凝胶电泳分离. 结果发现2个PreS1特异结合蛋白,经质谱鉴定为分子伴侣蛋白——葡萄糖调节蛋白78(GRP78)和葡萄糖调节蛋白75(GRP75).通过免疫共沉淀和Western印迹分析证实,PreS1与GRP75之间存在相互作用.实验结果表明,GRP75为新发现乙型肝炎病毒PreS1特异结合蛋白,其与PreS1结合后的生理功能以及在HBV感染过程中的作用值得深入研究.  相似文献   

13.
We previously identified hypothetical protein Cpn1027 as a novel inclusion membrane protein that is unique to Chlamydia pneumoniae. In the current study, using a yeast-two hybrid screen assay, we identified host cell cytoplasmic activation/proliferation-associated protein 2 (Caprin2) as an interacting partner of Cpn1027. The interaction was confirmed and mapped to the C-termini of both Cpn1027 and Caprin2 using co-immunoprecipitation and GST pull-down assays. A RFP-Caprin2 fusion protein was recruited to the chlamydial inclusion and so was the endogenous GSK3β, a critical component of the β-catenin destruction complex in the Wnt signaling pathway. Cpn1027 also co-precipitated GSK3β. Caprin2 is a key regulator of the Wnt signaling pathway by promoting the recruitment of the β-catenin destruction complex to the cytoplasmic membrane in the presence of Wnt signaling while GSK3β is required for priming β-catenin for degradation in the absence of Wnt signaling. The Cpn1027 interactions with Caprin2 and GSK3β may allow C. pneumoniae to actively sequester the β-catenin destruction complex so that β-catenin is maintained even in the absence of extracellular Wnt activation signals. The maintained β-catenin can trans-activate Wnt target genes including Bcl-2, which may contribute to the chlamydial antiapoptotic activity. We found that the C. pneumoniae-infected cells were more resistant to apoptosis induction and the anti-apoptotic activity was dependent on β-catenin. Thus, the current study suggests that the chlamydial inclusion protein Cpn1027 may be able to manipulate host Wnt signaling pathway for enhancing the chlamydial anti-apoptotic activity.  相似文献   

14.
15.
Chlamydophila pneumoniae is an obligate intracellular bacterium that causes bronchitis, pharyngitis, and pneumonia and may be involved in atherogenesis and Alzheimer's disease. Genome sequencing has identified three eukaryote-type serine/threonine protein kinases, Pkn1, Pkn5, and PknD, that may be important signaling molecules in Chlamydia. Full-length PknD was cloned and expressed as a histidine-tagged protein in Escherichia coli. Differential centrifugation followed by sodium carbonate treatment of E. coli membranes demonstrated that His-PknD is an integral membrane protein. Fusions of overlapping PknD fragments to alkaline phosphatase revealed that PknD contains a single transmembrane domain and that the kinase domain is in the cytoplasm. To facilitate solubility, the kinase domain was cloned and expressed as a glutathione S-transferase (GST) fusion protein in E. coli. Purified GST-PknD kinase domain autophosphorylated, and catalytic mutants (K33G, D156G, and K33G-D156G mutants) and activation loop mutants (T185A and T193A) were inactive. PknD phosphorylated recombinant Cpn0712, a type III secretion YscD homolog that has two forkhead-associated domains. Thin-layer chromatography revealed that the PknD kinase domain autophosphorylated on threonine and tyrosine and phosphorylated the FHA-2 domain of Cpn0712 on serine and tyrosine. To our knowledge, this is the first demonstration of a bacterial protein kinase with amino acid specificity for both serine/threonine and tyrosine residues and this is the first study to show phosphorylation of a predicted type III secretion structural protein.  相似文献   

16.
The PEF family proteins sorcin and grancalcin interact in vivo and in vitro   总被引:3,自引:0,他引:3  
The penta-EF hand (PEF) family of calcium binding proteins includes grancalcin, peflin, sorcin, calpain large and small subunits as well as ALG-2. Systematic testing of the heterodimerization abilities of the PEF proteins using the yeast two-hybrid and glutathione S-transferase pull-down assays revealed the new finding that grancalcin interacts strongly with sorcin. In addition, sorcin and grancalcin can be co-immunoprecipitated from lysates of human umbilical vein endothelial cells. Our results indicate that heterodimerization, in addition to differential interactions with target proteins, might be a way to regulate and fine tune processes mediated by calcium binding proteins of the penta-EF hand type.  相似文献   

17.
The purification of overexpressed fusion proteins using bacterial expression systems is a useful tool for the study of many proteins. One problem that can occur is the formation of stable interactions between the expressed fusion protein and certain endogenous bacterial proteins, such as the molecular chaperone GroEL. Such interactions may result in the copurification of contaminating bacterial proteins. Here we describe an efficient and inexpensive method for the removal of contaminating GroEL from a bacterially expressed GST fusion protein. In this method, denatured bacterial proteins are added to the bacterial lysates prior to the addition of glutathione Sepharose resin. The denatured proteins compete for GroEL binding, thereby releasing the GroEL contaminants from the expressed fusion protein.  相似文献   

18.
19.
Gong Q  Cheng M  Chen H  Liu X  Si Y  Yang Y  Yuan Y  Jin C  Yang W  He F  Wang J 《FEBS letters》2011,585(17):2647-2652
Hepatitis C virus (HCV) infects human hepatocytes through several host factors. However, other prerequisite factors for viral entry remain to be identified. Using a yeast two-hybrid screen, we found that human phospholipid scramblase 1 interacts with HCV envelope proteins E1 and E2. These physical interactions were confirmed by co-immunoprecipitation and GST pull-down assays. Knocking down the expression of PLSCR1 inhibited the entry of HCV pseudoparticles. Moreover, PLSCR1 was required for the initial attachment of HCV onto hepatoma cells, where it specifically interacted with entry factor OCLN. We show that PLSCR1 is a novel attachment factor for HCV entry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号