首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lung epithelial (Calu-3) cells were used to investigate the effects of protease-activated receptor (PAR) stimulation on Cl secretion. Quantitative RT-PCR (QRT-PCR) showed that Calu-3 cells express PAR-1, -2, and -3 receptor mRNAs, with PAR-2 mRNA in greatest abundance. Addition of either thrombin or the PAR-2 agonist peptide SLIGRL to the basolateral solution of monolayers mounted in Ussing chambers produced a rapid increase in short-circuit current (Isc: thrombin, 21 ± 2 µA; SLIGRL, 83 ± 22 µA), which returned to baseline within 5 min after stimulation. Pretreatment of monolayers with the cell-permeant Ca2+-chelating agent BAPTA-AM (50 µM) abolished the increase in Isc produced by SLIGRL. When monolayers were treated with the cyclooxygenase inhibitor indomethacin (10 µM), nearly complete inhibition of both the thrombin- and SLIGRL-stimulated Isc was observed. In addition, basolateral treatment with the PGE2 receptor antagonist AH-6809 (25 µM) significantly inhibited the effects of SLIGRL on Isc. QRT-PCR revealed that Calu-3 cells express mRNAs for CFTR, the Ca2+-activated KCNN4 K+ channel, and the KCNQ1 K+ channel subunit, which, in association with KCNE3, is known to be regulated by cAMP. Stimulation with SLIGRL produced an increase in apical Cl conductance that was blocked in cells expressing short hairpin RNAs designed to target CFTR. These results support the conclusion that PAR stimulation of Cl secretion occurs by an indirect mechanism involving the synthesis and release of prostaglandins. In addition, PAR-stimulated Cl secretion requires activation of CFTR and at least two distinct K+ channels located in the basolateral membrane. cystic fibrosis transmembrane conductance regulator; KCNQ1; calcium-activated potassium channels; KCNN4; cAMP  相似文献   

2.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

3.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

4.
Both the Na+-dependent glucose cotransporter (SGLT1) and the cystic fibrosis transmembrane conductance regulator (CFTR) modulate Na+ and fluid movement, although in opposite directions. Yet few studies have investigated a possible interrelationship between these two transporters. By using the Caco-2 human colon carcinoma cell line, we confirmed that the activities of these transporters increased with spontaneous differentiation to the enterocytic phenotype. We showed that SGLT1 was positively regulated by Cl and that optimal activity of CFTR was dependent on the presence of glucose. We also demonstrated that inhibition of CFTR by glibenclamide or diphenylamine-2-carboxylate did not modify the activity of SGLT1 and inhibition of SGLT1 by phlorizin did not modify the activity of CFTR, although it resulted in inhibition of glycoconjugate synthesis. These results point to positive substrate-cross regulation of SGLT1 and CFTR and suggest that NaCl and glucose are important for not only Na+ absorption and fluid movement, but also for cAMP-dependent Cl efflux, and glycoconjugate synthesis, functions that are known to be anomalous in cystic fibrosis. J. Cell. Physiol. 176:472–481, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The retinal pigment epithelium (RPE) faces the photoreceptor outer segments and regulates the composition of the interstitial subretinal space. ATP enhances fluid movement from the subretinal space across the RPE. RPE cells can themselves release ATP, but the mechanisms and polarity of this release are unknown. The RPE expresses the cystic fibrosis transmembrane conductance regulator (CFTR), and CFTR is associated with ATP release in other epithelial cells. However, an increasing number of reports have suggested that the exocytotic pathway contributes to release. In the present study, we examined the involvement of CFTR and the vesicular pathway in ATP release from RPE cells. Release from cultured human ARPE-19 cells and across the apical membrane of fresh bovine RPE cells in an eyecup was studied. A cAMP cocktail to activate CFTR triggered ATP release from fresh and cultured RPE cells. Release from both RPE preparations was largely prevented by the broad-acting blocker glibenclamide and the specific thiazolidinone CFTR inhibitor CFTR-172. The block by CFTR-172 was enhanced by preincubation and prevented ATP release with 3.5 µM IC50. The rise in intracellular Ca2+ accompanying hypotonic challenge was prevented by CFTR-172. The vesicular transport inhibitor brefeldin A prevented ATP release after stimulation with both hypotonic and cAMP conditions, suggesting vesicular insertion was also involved. These results show an intimate involvement of CFTR in ATP release from RPE cells which can autostimulate receptors on the apical membrane to modify Ca2+ signaling. The requirement for both CFTR and vesicular transport pathways suggests vesicular insertion of CFTR may underlie the release of ATP. cystic fibrosis transmembrane conductance regulator; recycling endosomes; brefeldin A; autostimulation; retinal detachment  相似文献   

6.
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca2+-dependent Cl secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl and that stimulation by secretagogues enhances the intracellular Cl concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl secretion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

7.
Interaction of Salinity and Anaerobiosis in Barley and Rice   总被引:3,自引:0,他引:3  
Barley and rice at the early tillering stage were exposed simultaneouslyto anaerobiosis and high [NaCl]. Barley was grown at 0.5, 70,and 125 mol m–3 NaCl, and rice at 2, 20, 40, and 80 molm–3 NaCl. Surprisingly, anaerobiosis only slightly aggravatedthe adverse effects of high [NaCl] on root and shoot growthof both species. For rice and barley grown under aerobic conditions, high [NaCl]increased [Na+] and [Cl] and decreased [K+] in both rootsand shoots. However, the changes in ion concentrations in theshoots were smaller for rice than for barley. For roots of barley, anaerobiosis decreased [Na+], [Cl],and [K+] at both low and high [NaCl], possibly as a result ofinhibition of active ion accumulation. For barley shoots, anaerobiosisincreased [Na+] and [Cl], but only at high salinity;in contrast, [K+] was reduced by anaerobiosis at both low andhigh [NaCl]. These results indicate that anaerobiosis slightlyincreased the permeability of the barley root system to Na+and Cl. For rice, the most important interaction between salinity andanaerobiosis occurred in the shoots, where anaerobiosis increased[Na+] and decreased [K+], particularly at 40 and 80 mol m–3NaCl, while there was no interaction between anaerobiosis andsalinity for Cl uptake. It is therefore suggested thatanaerobic treatment of rice decreased the selectivity for K+over Na+ of cation transport to the shoots, at least for plantsgrown at high salinities.  相似文献   

8.
Our objective inthis study was to determine the effect of changes in luminal andcytoplasmic pH on cystic fibrosis transmembrane regulator (CFTR)Cl conductance(GCl). Wemonitored CFTRGCl in the apicalmembranes of sweat ducts as reflected byCl diffusion potentials(VCl) andtransepithelial conductance(GCl). We foundthat luminal pH (5.0-8.5) had little effect on thecAMP/ATP-activated CFTRGCl, showing thatCFTR GCl ismaintained over a broad range of extracellular pH in which it functionsphysiologically. However, we found that phosphorylation activation ofCFTR GCl issensitive to intracellular pH. That is, in the presence of cAMP and ATP [adenosine5'-O-(3-thiotriphosphate)],CFTR could be phosphorylated at physiological pH (6.8) but not at lowpH (~5.5). On the other hand, basic pH prevented endogenousphosphatase(s) from dephosphorylating CFTR.After phosphorylationof CFTR with cAMP and ATP, CFTRGCl is normallydeactivated within 1 min after cAMP is removed, even in the presence of5 mM ATP. This deactivation was due to an increase in endogenousphosphatase activity relative to kinase activity, since it was reversedby the reapplication of ATP and cAMP. However, increasing cytoplasmicpH significantly delayed the deactivation of CFTRGCl in adose-dependent manner, indicating inhibition of dephosphorylation. Weconclude that CFTRGCl may beregulated via shifts in cytoplasmic pH that mediate reciprocal controlof endogenous kinase and phosphatase activities. Luminal pH probably has little direct effect on these mechanisms. This regulation of CFTRmay be important in shifting electrolyte transport in the duct fromconductive to nonconductive modes.

  相似文献   

9.
Mammary epithelial 31EG4 cells (MEC) were grown as monolayers onfilters to analyze the apical membrane mechanisms that help mediate ionand fluid transport across the epithelium. RT-PCR showed the presenceof cystic fibrosis transmembrane conductance regulator (CFTR) andepithelial Na+ channel (ENaC) message, and immunomicroscopyshowed apical membrane staining for both proteins. CFTR was alsolocalized to the apical membrane of native human mammary ductepithelium. In control conditions, mean values of transepithelialpotential (apical-side negative) and resistance(RT) are 5.9 mV and 829  · cm2, respectively. The apical membranepotential (VA) is 40.7 mV, and the mean ratioof apical to basolateral membrane resistance (RA/RB) is 2.8. Apicalamiloride hyperpolarized VA by 19.7 mV andtripled RA/RB. AcAMP-elevating cocktail depolarized VA by 17.6 mV, decreased RA/RB by60%, increased short-circuit current by 6 µA/cm2,decreased RT by 155  · cm2, and largely eliminated responses toamiloride. Whole cell patch-clamp measurements demonstratedamiloride-inhibited Na+ currents [linear current-voltage(I-V) relation] and forskolin-stimulated Clcurrents (linear I-V relation). A capacitance probe methodshowed that in the control state, MEC monolayers either absorbed orsecreted fluid (2-4µl · cm2 · h1). Fluidsecretion was stimulated either by activating CFTR (cAMP) or blockingENaC (amiloride). These data plus equivalent circuit analysis showedthat 1) fluid absorption across MEC is mediated byNa+ transport via apical membrane ENaC, and fluid secretionis mediated, in part, by Cl transport via apicalCFTR; 2) in both cases, appropriate counterions move throughtight junctions to maintain electroneutrality; and 3)interactions among CFTR, ENaC, and tight junctions allow MEC to eitherabsorb or secrete fluid and, in situ, may help control luminal[Na+] and [Cl].

  相似文献   

10.
In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on internal Ca2+.  相似文献   

11.
The effects of NaCl were studied in 6-month-old jack pine (Pinus banksiana Lamb.) seedlings growing in solution culture under hypoxic (approximately 2 mg lу O2) and well-aerated (approximately 8 mg lу O2) conditions. The results showed that hypoxia led to further reduction of stomatal conductance (gs) in plants treated with 45 mM NaCl. This effect was likely due to a reduction in root hydraulic conductance by both stresses. When applied individually or together, neither 45 mM NaCl nor hypoxia affected cell membrane integrity of needles as measured by tissue electrolyte leakage. Hypoxia did not alter shoot Na+ and Clm concentrations in NaCl-treated plants. However, root Na+ concentrations were lower in NaCl-treated hypoxic plants, suggesting that hypoxia affected the ability of roots to store Na+. Hypoxia also induced root electrolyte leakage from NaCl-treated and control plants. The higher root Clm concentrations compared with Na+ and the positive correlation between root Clm concentrations and electrolyte leakage suggest that Clm played a major role in salt injury observed in jack pine seedlings. Roots of well-aerated plants treated for 1 week with NaCl contained almost two-fold higher concentration of total non-structural carbohydrates compared with plants from other experimental treatments and these concentrations decreased in subsequent weeks. We suggest that under prolonged hypoxic conditions, roots lose the ability to prevent Clm uptake resulting in the increase in root Clm concentration, which has damaging effects on root cell membranes.  相似文献   

12.
Bumetanide blocks CFTR GCl in the native sweat duct   总被引:1,自引:0,他引:1  
Bumetanide is wellknown for its ability to inhibit the nonconductiveNa+-K+-2Clcotransporter. We were surprised in preliminary studies to find thatbumetanide in the contraluminal bath also inhibited NaCl absorption inthe human sweat duct, which is apparently poor in cotransporteractivity. Inhibition was accompanied by a marked decrease in thetransepithelial electrical conductance. Because the cystic fibrosistransmembrane conductance regulator (CFTR) Cl channel is richlyexpressed in the sweat duct, we asked whether bumetanide acts byblocking this anion channel. We found that bumetanide1) significantly increased wholecell input impedance, 2)hyperpolarized transepithelial and basolateral membrane potentials, 3) depolarized apical membranepotential, 4) increased the ratio ofapical-to-basolateral membrane resistance, and5) decreased transepithelialCl conductance(GCl).These results indicate that bumetanide inhibits CFTRGClin both cell membranes of this epithelium. We excluded bumetanideinterference with the protein kinase A phosphorylation activationprocess by "irreversibly" phosphorylating CFTR [by usingadenosine5'-O-(3-thiotriphosphate) in thepresence of a phosphatase inhibition cocktail] before bumetanideapplication. We then activated CFTRGClby adding 5 mM ATP. Bumetanide in the cytoplasmic bath(103 M) inhibited ~71%of this ATP-activated CFTRGCl,indicating possible direct inhibition of CFTRGCl.We conclude that bumetanide inhibits CFTRGClin apical and basolateral membranes independent of phosphorylation. Theresults also suggest that>105 M bumetanide cannotbe used to specifically block theNa+-K+-2Cl cotransporter.

  相似文献   

13.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

14.
Extrusion of protons as a response to high-NaCl stress in intactmung bean roots was investigated at different external concentrationsof Ca2+ ions ([Ca2+]ex). The extrusion of protons was graduallyenhanced in the roots exposed to 100 mM NaCl, and high [Ca2+]exdiminished this enhancement of the extrusion. Vesicles of plasmalemmaand tonoplast were prepared from the roots and the H+-translocatingATPase (H+-ATPase) activities associated with the two typesof membrane and the H+-pyrophosphatase (H+-PPase) activity ofthe tonoplast were assayed. The plasmalemma ATPase was stimulatedin parallel with dramatic increases in the intracellular concentrationof Na+([Na+]in). High [Ca2+]ex prevented the increase in [Na+]inand diminished the stimulation of ATPase activity. The tonoplastATPase showed a rapid response to salt stress and was similarlystimulated even at high [Ca2+]M. The activities of both ATPaseswere, however, insensitive to concentrations of Na+ ions upto 100 HIM. By contrast, H+-PPase activity of the tonoplastwas severely inhibited with increasing [Na+]in under salt stressand recovered with high [Ca2+]ex. These findings suggest thathigh-NaCl stress increases the intracellular concentration ofNa+ ions in mung bean roots, which inhibits the tonoplast H+-PPase,and the activity of the plasmalemma H+-ATPase is thereby stimulatedand regulates the cytoplasmic pH. (Received March 26, 1991; Accepted December 13, 1991)  相似文献   

15.
1-Ethyl-2-benzimidazolone (EBIO) caused a sustained increase inelectrogenic Cl secretionin isolated mouse colon mucosae, an effect reduced by blockingbasolateral K+ channels. TheCa2+-sensitiveK+ channel blocker charybdotoxin(ChTX) and the cAMP-sensitive K+channel blocker 293B were more effective when the other had been addedfirst, suggesting that both types ofK+ channel were activated. EBIOdid not cause Cl secretionin cystic fibrosis (CF) colonic epithelia. In apically permeabilizedcolonic mucosae, EBIO increased theK+ current when a concentrationgradient was imposed, an effect that was completely sensitive toChTX. No current sensitive to trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethylchromane (293B) was found in this condition. However, the presence ofbasolateral cAMP-sensitive K+channels was demonstrated by the development of a 293B-sensitive K+ current after cAMP applicationin permeabilized mucosae. In isolated colonic crypts EBIO increasedcAMP content but had no effect on intracellularCa2+. It is concludedthat EBIO stimulates Clsecretion by activatingCa2+-sensitive and cAMP-sensitiveK+ channels, therebyhyperpolarizing the apical membrane, which increases the electricalgradient for Cl effluxthrough the CF transmembrane conductance regulator (CFTR). CFTR is alsoactivated by the accumulation of cAMP as well as by direct activation.

  相似文献   

16.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

17.
Na+/H+ exchangers (NHE) are ubiquitous transporters participating in regulation of cell volume and pH. Cell shrinkage, acidification, and growth factors activate NHE by increasing its sensitivity to intracellular H+ concentration. In this study, the kinetics were studied in dog red blood cells of Na+ influx through NHE as a function of external Na+ concentration ([Na+]o). In cells in isotonic media, [Na+]o inhibited Na+ influx >40 mM. Osmotic shrinkage activated NHE by reducing this inhibition. In cells in isotonic media + 120 mM sucrose, there was no inhibition, and influx was a hyperbolic function of [Na+]o. The kinetics of Na+-inhibited Na+ influx were analyzed at various extents of osmotic shrinkage. The curves for inhibited Na+ fluxes were sigmoid, indicating more than one Na+ inhibitory site associated with each transporter. Shrinkage significantly increased the Na+ concentration at half-maximal velocity of Na+-inhibited Na+ influx, the mechanism by which shrinkage activates NHE. erythrocytes; cell volume regulation; amiloride; kinetics of sodium ion influx  相似文献   

18.
The influence of salt status of root tissue of Zea mays on influxof 84Rb and 22Na and net accumulation of K+ and Na+ was studied.Low-salt roots were grown in 0.5 mM CaCl2, and high-salt rootsin 2.5 mM KC1 + 7.5 mM NaCl + 0.5 mM CaCl2. High-salt statusgreatly reduced (approx. 90 per cent inhibition) both 22Na and86Rb influxes in the low concentration range isotherm (i.e.at external concentrations below 1 mM). A less marked inhibitionwas observed in the higher concentration range isotherm (1–30mM), indicating that the uptake in this range is less affectedby the salt status of the tissue. During transition from low- to high-salt status there was anet accumulation of K+ but not of Na+ despite the presence ofa measurable 22Na+ influx at all times. The presence of a continuous22Na influx but no net accumulation implies an Na+ efflux frommaize root tissue. The results differ significantly from thosepreviously published for barley and a possible explanation ofthese differences is discussed.  相似文献   

19.
During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1) participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl- channels and are likely causing the decline of CFTR during late gestation in preparation for perinatal lung transition.  相似文献   

20.
Concentrations of inorganic and organic solutes were measuredin sap extracted from individual mesophyll and epidermal cellsof the third leaf of barley. During the development of the thirdleaf plants were grown in various salt solutions (NaCl; 2, 50,100, and 150 mM, KCI; 100 mM or KNO3; 100 mM). Leaves were analysed2–4 d after full expansion. Cell-sap was extracted usinga modified pressure probe and analysed for its osmolality, concentrationsof P, Na+ K+ Ca2+, and Cl and, in some cases, of nitrate,hexoses and total amino acids. Salt treatment caused differentialchanges in the concentrations of solutes in mesophyll and epidermalcells, but did not affect the basic pattern of solute compartmentationbetween these tissues. Calcium was found at osmotically significantconcentrations only in the epidermis, whereas P and organicsolutes were almost exclusively found in the mesophyll. Chlorideand Na+ accumulated preferentially in the epidermis, althoughmesophyll concentrations also increased considerably. At 150mM external NaCl, mesophyll cells contained 302 mM Na and 167mM Cl, compared to 29 mM Na+ and 16 mM Cl in thecontrol. Mesophyll Cl levels were even higher in the100 mM KCl treatment (216 mM) where mesophyll and epidermalK+ accumulated to 424 and 491 mM, respectively. These huge increasesin mesophyll Na+ Cl and K+ were not associated with abreakdown in leaf performance since net rates of photosynthesisdecreased only by less than 20%. Under control (2 mM NaCl) conditions,solutes followed patterned gradients between the various epidermalcell types. The extent of these gradients changed with leafage. During 50 mM NaCl treatment, gradients in Cl, nitrateand malate concentrations progressively disappeared, with malateconcentrations approaching zero. Potassium and Na+ exhibitedaltered distribution profiles, whereas Ca2+ distribution wasunaffected. NaCl-dependent increases in osmolalities differedbetween cells. Exposure of plants to 150 mM NaCl caused qualitativelysimilar changes in both epidermal solute and osmolality profiles,although absolute values differed from those at 50 mM NaCl.In particular, epidermal Cl and Na+ increased to about500 mM and K+ disappeared (<<5 mM) from the vacuole ofcertain epidermal cell types completely. Key words: Barley leaf epidermis, mesophyll, salt stress, single-cell analysis, vacuolar solutes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号