共查询到20条相似文献,搜索用时 0 毫秒
1.
《Peptides》2014
Ghrelin exhibits its biological effect through binding to the growth hormone secretagogue 1a receptor (GHS-R1a). Recently, it has been reported that ghrelin has an anti-apoptotic effect in several cell types. However, the molecule mechanisms underlying the anti-apoptotic effect of ghrelin remain poorly understood. In this study, we investigated the intracellular mechanisms responsible for anti-apoptotic effect of ghrelin on human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with ghrelin inhibited high glucose-induced cell apoptosis. Ghrelin stimulated the rapid phosphorylation of mammalian target of rapamycin (mTOR), P70S6K and S6. The GHS-R1a-specific antagonist [D-Lys3]-GHRP-6 abolished the anti-apoptotic effect and inhibited the activation of mTOR, P70S6K, S6 induced by ghrelin. Pretreatment of cells with specific inhibitor of mTOR blocked the anti-apoptotic effect of ghrelin. In addition, ghrelin protected HUVECs against high glucose induced apoptosis by increasing Bcl-2/Bax ratio. Taken together, our results demonstrate that ghrelin produces a protective effect on HUVECs through activating GHS-R1a and mTOR/P70S6K signaling pathway mediates the effect of ghrelin. These observations suggest that ghrelin may act as a survival factor in preventing HUVECs apoptosis caused by high glucose. 相似文献
2.
BackgroundSelenite at high dosage exhibits great potential in curing tumors. It has been shown that selenite inhibits tumor growth through regulation of microtubule dynamics, however, the exact underlying mechanisms remained to be fully elucidated.Methods & resultsWestern blots were carried out to evaluate expression level of different molecules. Our current study discovered that selenite induced microtubule disassembly, cell cycle arrest and finally resulted in apoptosis in Jurkat leukemia cells, while during this process disassembled tubulins were re-organized after long-term exposure to selenite. Furthermore, JNK was activated in the cytoplasm of selenite-treated Jurkat cells, and inhibition of JNK activity successfully prevented the process of microtubule re-assembly. Moreover, inactivation of JNK further enhanced selenite-induced cell cycle arrest and apoptosis. According to the results from cell counting-8 assay, blockage of microtubule re-assembly by colchicine further inhibited Jurkat cell viability after exposure to selenite. Experiments in a xenograft model also proved that selenite could alter JNK activity, destroy microtubule structure and inhibit cell division in vivo. Moreover, TP53, MAPT and YWHAZ were identified to be three most confident interactors that link JNK to microtubule assembly using PPIs analysis.ConclusionOur study indicated that cytosolic JNK-dependent microtubule re-organization took a protective function during selenite-induced apoptosis, while inhibition of this process would finally enhance the anti-tumor effect of selenite. 相似文献
3.
Deng W Wang DA Gosmanova E Johnson LR Tigyi G 《American journal of physiology. Gastrointestinal and liver physiology》2003,284(5):G821-G829
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation. 相似文献
4.
The present study has aimed to verify the influence of calcineurin and mTOR pathways in skeletal muscle longitudinal growth
induced by stretching. Male Wistar rats were treated with cyclosporin-A or rapamycin for 10 days. To promote muscle stretching,
casts were positioned so as completely to dorsiflex the plantar-flexor muscles at the ankle in one hind limb during the last
4 days of treatment with either cyclosporin-A or rapamycin. Thereafter, we determined soleus length, weight, protein content,
and phenotype. In addition, NFATc1, Raptor, S6K1, 4E-BP1, iNOS, and nNOS gene expression in the soleus were determined by
real-time polymerase chain reaction. Soleus length, weight, and protein content were significantly reduced by rapamycin treatment
in animals submitted to stretching (P<0.05). In contrast, cyclosporin-A treatment did not alter these parameters. In all cyclosporin-A treated groups, there was
a significant reduction in NFATc1 expression (P<0.001). Similarly, a significant reduction was noted in Raptor (P<0.001) and S6K1 (P<0.01) expression in all rapamycin-treated groups. No alteration was observed in 4E-BP1 gene expression among rapamycin-treated
groups. Stretching increased gene expression of both NOS isoforms in skeletal muscle. Rapamycin treatment did not interfere
with NOS gene expression (P<0.05). Cyclosporin-A treatment did not impair muscle growth induced by stretching but instead caused a marked slow-to-fast
fiber shift in the soleus; this was attenuated by stretching. The data presented herein indicate that mTOR pathway is involved
in skeletal muscle longitudinal growth.
We gratefully acknowledge the financial support given by FAPESP. 相似文献
5.
Piwocka K Jaruga E Skierski J Gradzka I Sikora E 《Free radical biology & medicine》2001,31(5):670-678
Curcumin, a yellow pigment from Curcuma longa, exhibits anti-inflammatory, antitumor, and antioxidative properties. Although its precise mode of action has not been elucidated so far, numerous studies have shown that curcumin may induce apoptosis in normal and cancer cells. Previously, we showed that in Jurkat cells curcumin induced nontypical apoptosis-like pathway, which was independent of mitochondria and caspase-3. Now we show that the inhibition of caspase-3 by curcumin, which is accompanied by attenuation of internucleosomal DNA fragmentation, may be due to elevation of glutathione, which increased in curcumin-treated cells to 130% of control. We have demonstrated that glutathione depletion does not itself induce apoptosis in Jurkat cells; though, it can release cytochrome c from mitochondria and caspase-3 from inhibition by curcumin, as shown by Western blot. The level of Bcl-2 protein was not affected by glutathione depletion even upon curcumin treatment. Altogether, our results show that in Jurkat cells curcumin prevents glutathione decrease, thus protecting cells against caspase-3 activation and oligonucleosomal DNA fragmentation. On the other hand, it induces nonclassical apoptosis via a still-unrecognized mechanism, which leads to chromatin degradation and high-molecular-weight DNA fragmentation. 相似文献
6.
Sodium butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy. 相似文献
7.
Saiki S Sasazawa Y Imamichi Y Kawajiri S Fujimaki T Tanida I Kobayashi H Sato F Sato S Ishikawa K Imoto M Hattori N 《Autophagy》2011,7(2):176-187
Caffeine is one of the most frequently ingested neuroactive compounds. All known mechanisms of apoptosis induced by caffeine act through cell cycle modulation or p53 induction. It is currently unknown whether caffeine-induced apoptosis is associated with other cell death mechanisms, such as autophagy. Herein we show that caffeine increases both the levels of microtubule-associated protein 1 light chain 3-II and the number of autophagosomes, through the use of western blotting, electron microscopy and immunocytochemistry techniques. Phosphorylated p70 ribosomal protein S6 kinase (Thr389), S6 ribosomal protein (Ser235/236), 4E-BP1 (Thr37/46) and Akt (Ser473) were significantly decreased by caffeine. In contrast, ERK1/2 (Thr202/204) was increased by caffeine, suggesting an inhibition of the Akt/mTOR/p70S6K pathway and activation of the ERK1/2 pathway. Although insulin treatment phosphorylated Akt (Ser473) and led to autophagy suppression, the effect of insulin treatment was completely abolished by caffeine addition. Caffeine-induced autophagy was not completely blocked by inhibition of ERK1/2 by U0126. Caffeine induced reduction of mitochondrial membrane potentials and apoptosis in a dose-dependent manner, which was further attenuated by the inhibition of autophagy with 3-methyladenine or Atg7 siRNA knockdown. Furthermore, there was a reduced number of early apoptotic cells (annexin V positive, propidium iodide negative) among autophagy-deficient mouse embryonic fibroblasts treated with caffeine than their wild-type counterparts. These results support previous studies on the use of caffeine in the treatment of human tumors and indicate a potential new target in the regulation of apoptosis. 相似文献
8.
Reactive oxygen species (ROS) including hydrogen peroxide (H2O2) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H2O2 on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H2O2 applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H2O2 increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H2O2. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill. 相似文献
9.
10.
Subhadip Raychaudhuri Joanna Skommer Kristen Henty Nigel Birch Thomas Brittain 《Apoptosis : an international journal on programmed cell death》2010,15(4):401-411
In the past few years, overwhelming evidence has accrued that a high level of expression of the protein neuroglobin protects neurons in vitro, in animal models, and in humans, against cell death associated with hypoxic and amyloid insult. However, until now, the exact mechanism of neuroglobin’s protective action has not been determined. Using cell biology and biochemical approaches we demonstrate that neuroglobin inhibits the intrinsic pathway of apoptosis in vitro and intervenes in activation of pro-caspase 9 by interaction with cytochrome c. Using systems level information of the apoptotic signalling reactions we have developed a quantitative model of neuroglobin inhibition of apoptosis, which simulates neuroglobin blocking of apoptosome formation at a single cell level. Furthermore, this model allows us to explore the effect of neuroglobin in conditions not easily accessible to experimental study. We found that the protection of neurons by neuroglobin is very concentration sensitive. The impact of neuroglobin may arise from both its binding to cytochrome c and its subsequent redox reaction, although the binding alone is sufficient to block pro-caspase 9 activation. These data provides an explanation the action of neuroglobin in the protection of nerve cells from unwanted apoptosis. 相似文献
11.
Cell growth (accumulation in cell mass) ensues through the promotion of macromolecular biosynthesis. S 6 ribosomal kinase 1 (S6K1), which is activated by the mammalian target of rapamycin, is critical for cell growth. The early events that control S6K1 signaling remain unclear. Here we show that SHP-2 suppresses S6K1 activity under conditions of growth factor deprivation. We show that under conditions of growth factor deprivation, S6K1 activity was increased in fibroblasts lacking functional SHP-2 and in cells where knock down of SHP-2 expression was established by small interference RNA. Consistent with these findings, fibroblasts lacking functional SHP-2 exhibited increased cell size as compared with wild type cells. Growth factor deprivation reduces cellular energy, and the energy-sensing 5'-AMP-activated protein kinase (AMPK) negatively regulates S6K1. We found that SHP-2 promoted AMPK activity under conditions of growth factor deprivation (low energy), suggesting that SHP-2 negatively regulates S6K1 via an AMPK-dependent pathway. These results implicate SHP-2 as an early mediator in the S6K1 signaling pathway to limit cell growth in low energy states. 相似文献
12.
A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis 总被引:12,自引:0,他引:12
Bannerman DD Tupper JC Ricketts WA Bennett CF Winn RK Harlan JM 《The Journal of biological chemistry》2001,276(18):14924-14932
Lipopolysaccharide (LPS) has been implicated as the bacterial component responsible for much of the endothelial cell injury/dysfunction associated with Gram-negative bacterial infections. Protein synthesis inhibition is required to sensitize the endothelium to lipopolysaccharide-induced apoptosis, suggesting that a constitutive or inducible cytoprotective protein(s) is required for endothelial survival. We have identified two known endothelial anti-apoptotic proteins, c-FLIP and Mcl-1, the expression of which is decreased markedly in the presence of cycloheximide. Decreased expression of both proteins preceded apoptosis evoked by lipopolysaccharide + cycloheximide. Caspase inhibition protected against apoptosis, but not the decreased expression of c-FLIP and Mcl-1, suggesting that they exert protection upstream of caspase activation. Inhibition of the degradation of these two proteins with the proteasome inhibitor, lactacystin, prevented lipopolysaccharide + cycloheximide-induced apoptosis. Similarly, lactacystin protected against endothelial apoptosis induced by either tumor necrosis factor-alpha or interleukin-1beta in the presence of cycloheximide. That apoptosis could be blocked in the absence of new protein synthesis by inhibition of the proteasome degradative pathway implicates the requisite involvement of a constitutively expressed protein(s) in the endothelial cytoprotective pathway. Finally, reduction of FLIP expression with antisense oligonucleotides sensitized endothelial cells to LPS killing, demonstrating a definitive role for FLIP in the protection of endothelial cells from LPS-induced apoptosis. 相似文献
13.
Ying Li Lili Zhang Yanhong Shan Chunshu Jia Ying Xu 《Molecular reproduction and development》2019,86(11):1561-1568
Dysregulation of the cell cycle is common in human tumorigenesis. Therefore, CDK4/6 inhibitors targeting the cell cycle have been developed, and their antiapoptotic effects have been highly correlated with potential clinical therapies. The aim of this study was to identify the regulatory effect of the CDK4/6 inhibitor palbociclib on chemerin‐induced apoptosis of immortalized human granulosa‐lutein (hGL) cells and to elucidate its fundamental mechanism of action. Palbociclib enhanced antioxidative enzyme generation and diminished ROS generation in hGL cells. Furthermore, we found that palbociclib suppressed chemerin‐induced apoptotic protein expression, reversing the Bcl‐2/Bax ratio and inhibiting the p53/p21 waf pathway. Eventually, palbociclib decreased the level of cleaved caspase‐3 and ‐9, hindering the apoptosis of hGL cells. In general, the antiapoptotic efficacy of palbociclib could be attributed in part to the modulation of the mitochondrial apoptotic pathway in hGL cells. 相似文献
14.
Suppression of PI3K/mTOR pathway rescues LLC cells from cell death induced by hypoxia 总被引:1,自引:0,他引:1
Hamanaka Y Mukai M Shimamura M Kitagawa T Nishida T Isohashi F Ito T Nishizawa Y Tatsuta M Matsuda H Inoue M 《Biochemical and biophysical research communications》2005,330(1):318-326
Cancer cells in solid tumors are challenged by various microenvironmental stresses, including hypoxia, and cancer cells in hypoxic regions are resistant to current cancer therapies. To investigate the mechanism of resistance to hypoxia in cancer cells, we examined mouse Lewis lung carcinoma (LLC) cells, which died due to necrosis at high density under hypoxic but not under normoxic conditions. Levels of mammalian target of rapamycin (mTOR), a central regulator of cellular energy, are reported to be suppressed in hypoxia. We found that phosphorylation of two molecules downstream to it, ribosomal p70 S6 kinase (S6K) and ribosomal protein S6, was markedly suppressed by hypoxia. Overexpression of the active form of S6K increased the sensitivity of LLC cells to hypoxia. On the other hand, inhibition of PI3K or mTOR dramatically reduced hypoxia-induced cell death under hypoxic conditions. Under hypoxic conditions, blockade of the PI3K or mTOR pathway increased levels of intracellular ATP and delayed decreases in pH and glucose level in culture medium, without affecting the cell cycle. 相似文献
15.
The caspases are known to play a pivotal role in the triggering and execution of apoptosis in virtually all cell types. Because inappropriate apoptosis is a prominent feature of many human diseases, the caspases are attractive targets for therapeutic intervention. In the present study we investigated whether Jurkat T lymphocytes rescued from Fas-induced cell death through the inhibition of caspases are functional. Here we show that the pan-caspase, tripeptide inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Ome) fluoromethylketone (z-VAD-FMK), inhibited the activation of caspase-2, -3, -7, and -8, and subsequently apoptosis in Jurkat T lymphocytes induced by agonistic anti-Fas. The apoptotic signals induced by the cross-linking of the Fas antigen have a relatively long half-life, as z-VAD-FMK had to be continuously present in the culture medium for 72 h after Fas stimulation in order to maintain cell survival. After 72 h, the z-VAD-FMK-rescued cells proliferate normally and responded to activation induced cell death after phytohaemaglutinin treatment, and readily undergo apoptosis when restimulated with agonistic Fas antibodies. Taken together, our results demonstrate that Jurkat T cells rescued from Fas-mediated cell death through the inhibition of caspases are functional. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(12):1896-1900
Inhibition of mTOR by rapamycin prevents cellular senescence. Here we investigated the effects of MEK and PI-3K on cellular senescence. Unlike LY294002 (PI-3K inhibitor), both U0126 and PD98059 (MEK inhibitors) did not significantly decrease beta-Gal staining in aging human fibroblasts and fibrosarcoma cells. However, using a sensitive, functional method, we identified that not only LY294002 but also U0126 prevented irreversible loss of proliferative potential associated with cellular senescence. At concentrations that blocked S6 phosphorylation, rapamycin, U0126 and LY294002 equally prevented senescence. Furthermore, there was no additive effect by combining of rapamycin with either U0126 or LY294002. Taken together this suggests that (a) simultaneous activation of PI-3K and MEK is required to ensure cellular senescence and (b) U0126 and LY294002 suppresses senescence via the rapamycin-sensitive pathway. 相似文献
17.
18.
Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway 总被引:18,自引:0,他引:18
Fornaro M Plescia J Chheang S Tallini G Zhu YM King M Altieri DC Languino LR 《The Journal of biological chemistry》2003,278(50):50402-50411
Integrins are cell surface heterodimeric transmembrane receptors that, in addition to mediating cell adhesion to extracellular matrix proteins modulate cell survival. This mechanism may be exploited in cancer where evasion from apoptosis invariably contributes to cellular transformation. The molecular mechanisms responsible for matrix-induced survival signals begin to be elucidated. Here we report that the inhibitor of apoptosis survivin is expressed in vitro in human prostate cell lines with the highest levels present in aggressive prostate cancer cells such as PC3 and LNCaP-LN3 as well as in vivo in prostatic adenocarcinoma. We also show that interference with survivin in PC3 prostate cancer cells using a Cys84--> Ala dominant negative mutant or survivin antisense cDNA causes nuclear fragmentation, hypodiploidy, cleavage of a 32-kDa proform caspase-3 to active caspase-3, and proteolysis of the caspase substrate poly(ADP-ribose) polymerase. We demonstrate that in the aggressive PC3 cell line, adhesion to fibronectin via beta1 integrins results in up-regulation of survivin and protection from apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). In contrast, survivin is not up-regulated by cell adhesion in the non-tumorigenic LNCaP cell line. Dominant negative survivin counteracts the ability of fibronectin to protect cells from undergoing apoptosis, whereas wild-type survivin protects non-adherent cells from TNF-alpha-induced apoptosis. Evidence is provided that expression of beta1A integrin is necessary to protect non-adherent cells transduced with survivin from TNF-alpha-induced apoptosis. In contrast, the beta1C integrin, which contains a variant cytoplasmic domain, is not able to prevent apoptosis induced by TNF-alpha in non-adherent cells transduced with survivin. Finally, we show that regulation of survivin levels by integrins are mediated by protein kinase B/AKT. These findings indicate that survivin is required to maintain a critical anti-apoptotic threshold in prostate cancer cells and identify integrin signaling as a crucial survival pathway against death receptor-mediated apoptosis. 相似文献
19.
Gibellini D Re MC Ponti C Maldini C Celeghini C Cappellini A La Placa M Zauli G 《Cellular immunology》2001,207(2):89-99
We have here investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a new member of the TNF cytokine superfamily, on the survival of Jurkat lymphoblastoid cell lines stably transfected with plasmids expressing the wild-type or mutated (Cys22) human immunodeficiency virus type 1 (HIV-1) tat gene. Jurkat cells transfected with wild-type tat were resistant to TRAIL-mediated apoptosis, while Jurkat cells mock-transfected with the control plasmid or with a mutated nonfunctional tat cDNA were highly susceptible to TRAIL-mediated apoptosis. Also, pretreatment with low concentrations (10-100 ng/ml) of extracellular synthetic Tat protein partially protected Jurkat cells from TRAIL-mediated apoptosis. Taken together, these results demonstrated that endogenously expressed tat and, to a lesser extent, extracellular Tat block TRAIL-mediated apoptosis. Since it has been shown that primary lymphoid T cells purified from HIV-1-infected individuals are more susceptible than those purified from normal individuals to TRAIL-mediated apoptosis, our findings underscore a potentially important role of Tat in protecting HIV-1-infected cells from TRAIL-mediated apoptosis. 相似文献