首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.  相似文献   

2.
3.

Background

Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates.

Results

To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor.

Conclusion

Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.  相似文献   

4.
Clarke T  Bouquet JM  Fu X  Kallesøe T  Schmid M  Thompson EM 《Gene》2007,396(1):159-169
Metazoan lamins are implicated in the organization of numerous critical nuclear processes. Among chordates, the appendicularian, Oikopleura dioica, has an unusually short life cycle involving rapid growth through extensive recourse to endoreduplication, a characteristic more associated with some invertebrates. In some tissues, this is accompanied by the formation of elaborate, bilaterally symmetric nuclear morphologies associated with specific gene expression patterns. Lamin composition can mediate nuclear shape in spermiogenesis as well as during pathological and normal aging and we have analyzed the O. dioica lamin and intermediate filament (IF) complement, comparing it to that present in other deuterostomes. O. dioica has one lamin gene coding two splice variants. Both variants share with the sister class ascidians a highly reduced C-terminal tail region lacking the immunoglobulin fold, indicating this derivation occurred at the base of the urochordate lineage. The OdLamin2 variant has a unique insertion of 63 amino acids in the normally short N-terminal region and has a developmental expression profile corresponding to the occurrence of endocycling. O. dioica has 4 cytoplasmic IF proteins, IF-A, C, Dalpha, and Dbeta. No homologues to the ascidian IF-B or F proteins were identified, reinforcing the suggestion that these proteins are unique to ascidians. The degree of sequence evolution in the rod domains of O. dioica cytoplasmic IF proteins and their closest ascidian and vertebrate homologues was similar. In contrast, whereas the rate of lamin B rod domain sequence evolution has also been similar in vertebrates, cephalochordates and the sea urchin, faster rates have occurred among the urochordates, with the O. dioica lamin displaying a far greater rate than any other lamin.  相似文献   

5.
Recent studies reveal correlation between microRNA (miRNA) innovation and increased developmental complexity. This is exemplified by dramatic expansion of the miRNA inventory in vertebrates, a lineage where genome duplication has played a significant evolutionary role. Urochordates, the closest extant group to the vertebrates, exhibit an opposite trend to genome and morphological simplification. We show that the urochordate, larvacean, Oikopleura dioica, possesses the requisite miRNA biogenic machinery. The miRNAs isolated by small RNA cloning were expressed throughout the short life cycle, a number of which were stocked as maternal determinants prior to rapid embryonic development. We identify sex-specific miRNAs that appeared as male/female gonad differentiation became apparent and were maintained throughout spermatogenesis. Whereas 80% of mammalian miRNAs are hosted in introns of protein-coding genes, the majority of O. dioica miRNA loci were located in antisense orientations to such genes. Including sister group ascidians in analysis of the urochordate miRNA repertoire, we find that 11 highly conserved bilaterian miRNA families have been lost or derived to the point they are not recognizable in urochordates and a further 4 of these families are absent in larvaceans. Subsequent to this loss/derivation, at least 29 novel miRNA families have been acquired in larvaceans. This suggests a profound reorganization of the miRNA repertoire integral to evolution in the urochordate lineage.  相似文献   

6.
The evolutionary history of the diverse lifestyles adopted by urochordates has attracted intense interest because it may effect the evolutionary history of vertebrates. Here, we report the complete mitochondrial (mt) DNA sequence of the pelagic thaliacean doliolid Doliolum nationalis. The doliolid mt genome shares the unusual tRNAs of trnM(uau) and trnG(ucu) with other ascidians, such as Halocynthia and Ciona. On the other hand, the gene order of the doliolid mt genome is significantly different from that of any ascidian species or vertebrate reported to date. Phylogenetic analyses of the amino acid sequences of 12 protein-coding genes strongly support the sister-grouping of doliolids and the Phlebobranch ascidian Ciona, with the Stolidobranch ascidian alocynthia as the outgroup, thereby providing strong support for the paraphyly of ascidians, as has been suggested by 18S rDNA studies. Given the paraphyletic nature of ascidians, it seems likely that the common ancestor of ascidians and thaliaceans was sessile, as are the present-day ascidians, and that the thaliaceans subsequently evolved a pelagic lifestyle.  相似文献   

7.
Recent advances in the study of the genetics and genomics of urochordates testify to a renewed interest in this chordate subphylum, believed to be the most primitive extant chordate relatives of the vertebrates. In addition to their primitive nature, many features of their reproduction and early development make the urochordates ideal model chordates for developmental genetics. Many urochordates spawn large numbers of transparent and externally developing embryos on a daily basis. Additionally, the embryos have a defined and well-characterized cell lineage until the end of gastrulation. Furthermore, the genomes of the urochordates have been estimated to be only 5-10% of the size of the vertebrates and to have fewer genes and less genetic redundancy than vertebrates. Genetic screens, which are powerful tools for investigating developmental mechanisms, have recently become feasible due to new culturing techniques in ascidians. Because hermaphrodite ascidians are able to self-fertilize, recessive mutations can be detected in a single generation. Several recent studies have demonstrated the feasibility of applying modern genetic techniques to the study of ascidian biology.  相似文献   

8.
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.  相似文献   

9.
Understanding the phylogenetic relationships of the three major urochordate groups within the deuterostomes is central to understanding the evolution of the chordates. We have prepared a detailed phylogenetic analysis of urochordates based on comparisons of 10 new urochordate 18S ribosomal DNA sequences with other urochordate sequences in GenBank. Maximum parsimony, neighbor-joining, minimum evolution, and maximum likelihood analyses of this large urochordate data set are consistent with a topology in which the urochordates are monophyletic within the deuterostomes and there are four separate clades of urochordates. These four distinct clades--styelid + pyurid ascidians, molgulid ascidians, phlebobranch ascidians + thaliaceans, and larvaceans--are mostly consistent with traditional morphological hypotheses and classifications. However, we find that the ascidians may not be a monophyletic group (as they have been considered traditionally) but instead appear paraphyletic. Another disparity with traditional classification is that the thaliaceans do not form a separate urochordate clade but rather cluster with the phlebobranch ascidians. Larvaceans have long branch lengths, which can be problematic for molecular phylogenetic methods, and their position within the urochordates cannot be unequivocally determined with 18S rDNA. This is important because the tadpole morphology of larvacean and ascidian larvae is the key trait of interest that distinguishes urochordates as chordates. Nevertheless, the present data set resolves at least three clades of urochordates and suggests strongly that urochordates form a monophyletic clade within the deuterostomes.  相似文献   

10.
GTPases of the Rho family are evolutionarily conserved proteins that control cell shape dynamics during physiological processes as diverse as cell migration and polarity, axon outgrowth and guidance, apoptosis and phagocytosis. In mammals, 18 Rho proteins are distributed in 7 subfamilies. Rho, Rac and Cdc42 are the best-characterized ones, benefiting from the use of worm and drosophila, which only express these 3 subfamilies. An additional model would therefore help understand the physiological role of other mammalian subfamilies. We identified in genome databases the complete Rho family of two ascidians, Ciona intestinalis and Ciona savignyi, and showed that these families contain single ancestors of most mammalian Rho subfamilies. In Ciona intestinalis, all Rho genes are expressed and display specific developmental variations of mRNA expression during tadpole formation. Although C. intestinalis expresses five additional Rac compared to the closely related Ciona savignyi, only two appeared fully active in functional assays. Last, we identified in Ciona intestinalis database more than 50 Rho regulators (RhoGEFs and RhoGAPs) and 20 effector targets, whose analysis further supports the notion that Rho signaling components are of comparable complexity in mammals and ascidians. Since the tadpole of ascidians combines vertebrate-like developmental features with reduced cell number, particularly adapted to evolutionary and developmental biology studies, our data advocate this model for physiological studies of Rho signaling pathways.  相似文献   

11.
12.
The evolutionary origin of vertebrate placodes remains controversial because divergent morphologies in urochordates, cephalochordates and vertebrates make it difficult to recognize organs that are clearly homologous to placode-derived features, including the olfactory organ, adenohypophysis, lens, inner ear, lateral line and cranial ganglia. The larvacean urochordate Oikopleura dioica possesses organs that morphologically resemble the vertebrate olfactory organ and adenohypophysis. We tested the hypothesis that orthologs of these vertebrate placodes exist in a larvacean urochordate by analyzing the developmental expression of larvacean homologs of the placode-marking gene families Eya, Pitx and Six. We conclude that extant chordates inherited olfactory and adenohypophyseal placodes from their last common ancestor, but additional independent proliferation and perhaps loss of placode types probably occurred among the three subphyla of Chordata.  相似文献   

13.
The small genome size and gene number of ascidians makes them an ideal model system in which to screen for conserved genes that regulate the development of chordates. Expression cloning has proven to be an effective strategy for isolating genes that play a role in embryogenesis. We have taken advantage of the large size and ease of manipulation of Xenopus embryos for use as an assay system to screen for developmental regulatory genes from the ascidian Ciona intestinalis. Many invertebrate genes have been shown to function in vertebrates, providing us with precedent for our cross-species analysis. The first clone isolated from this screen is an astacin class metalloprotease. This ascidian astacin, named no va, causes a gastrulation defect in Xenopus. In C. intestinalis, no va is expressed both maternally and zygotically. The zygotic expression is seen in the mesenchyme of gastrula and neurula staged embryos.  相似文献   

14.
Silva N  Smith WC 《PloS one》2008,3(6):e2552
The genomes of many marine invertebrates, including the purple sea urchin and the solitary ascidians Ciona intestinalis and Ciona savignyi, show exceptionally high levels of heterozygosity, implying that these populations are highly polymorphic. Analysis of the C. savignyi genome found little evidence to support an elevated mutation rate, but rather points to a large population size contributing to the polymorphism level. In the present study, the relative genetic polymorphism levels in sampled populations of ten different ascidian species were determined using a similarity index generated by AFLP analysis. The goal was to determine the range of polymorphism within the populations of different species, and to uncover factors that may contribute to the high level of polymorphism. We observe that, surprisingly, the levels of polymorphism within these species show a negative correlation with the reported age of invasive populations, and that closely related species show substantially different levels of genetic polymorphism. These findings show exceptions to the assumptions that invasive species start with a low level of genetic polymorphism that increases over time and that closely related species have similar levels of genetic polymorphism.  相似文献   

15.
16.
17.
The Ras family small GTPases play a variety of essential roles in eukaryotes. Among them, classical Ras (H-Ras, K-Ras, and N-Ras) and its orthologues are conserved from yeast to human. In ascidians, which phylogenetically exist between invertebrates and vertebrates, the fibroblast growth factor (FGF)-Ras-MAP kinase signaling is required for the induction of neural system, notochord, and mesenchyme. Analyses of DNA databases revealed that no gene encoding classical Ras is present in the ascidians, Ciona intestinalis and Halocynthia roretzi, despite the presence of classical Ras-orthologous genes in nematode, fly, amphioxus, and fish. By contrast, both the ascidians contain single genes orthologous to Mras, Rras, Ral, Rap1, and Rap2. A single Mras orthologue exists from nematode to mammalian. Thus, Mras evolved in metazoans independently of other Ras family genes such as Rras. Whole-mount in situ hybridization showed that C. intestinalis Mras orthologue (Ci-Mras) was expressed in the neural complex of the ascidian juveniles after metamorphosis. Knockdown of Ci-Mras with morpholino antisense oligonucleotides in the embryos and larvae resulted in undeveloped tails and neuronal pigment cells, abrogation of the notochord marker brachyury expression, and perturbation of the neural marker Otx expression, as has been shown in the experiments of the FGF-Ras-MAP kinase signaling inhibition. Mammalian Ras and M-Ras mediate nerve growth factor-induced neuronal differentiation in rat PC12 cells by activating the ERK/MAP kinase pathway transiently and sustainedly, respectively. Activated Ci-M-Ras bound to target proteins of mammalian M-Ras and Ras. Exogenous expression of an activated Ci-M-Ras in PC12 cells caused ERK activation and induced neuritogenesis via the ERK pathway as do mammalian M-Ras and Ras. These results suggest that the ascidian M-Ras orthologue compensates for lacked classical Ras and plays essential roles in neurogenesis in the ascidian.  相似文献   

18.
19.
Solitary ascidians are hermaphrodites that release sperm and eggs simultaneously. However, many species are self-sterile, owing to a self/non-self recognition system operating at the outer surface of the chorion during sperm-egg interaction. In Ciona intestinalis, self-incompatibility is thought to have a genetic basis. Here, we report a survey of the self-fertilization potential of a Santa Barbara, California, population of Ciona savignyi, a close relative of C. intestinalis. We found that, in contrast to reports on C. intestinalis, C. savignyi is highly self-fertile. However, using two nonlethal recessive mutant strains, aimless (aim) and immaculate (imc), and a stable transgenic strain that expresses green fluorescent protein (GFP) in the notochord to follow offspring genotype, we demonstrate that non-self sperm outcompete self-sperm in fertilization competition assays. When the chorion was removed, both self- and non-self sperm performed equally well in the competition assay. Thus the non-self/self gamete recognition in C. savignyi is not absolute but relative, and is mediated by one or more components in the chorion. We discuss the significance of this finding in the context of natural populations in the wild, where individuals of C. savignyi are typically found growing in large groups that spawn in unison and where self-fertilization would be expected to be very rare.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号