首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the changes in sex ratios and sex reversal rates in pejerrey Odontesthes bonariensis that occur with the progression of the spawning season in a seminatural setting. Four groups of hatchery-produced pejerrey larvae were stocked in floating cages in La Salada de Monasterio lake (Pampas region), a natural habitat of this species, and reared from hatching beyond gonadal sex determination with minimum human interference. Cage 1 was stocked at the beginning of the spring spawning season and the other cages were stocked with monthly delays until cage 4 in early summer. The genotypic (amhy+, XY/YY; amhy−, XX) and phenotypic (testis, male; ovary, female) sex ratios and proportions of genotype/phenotype mismatched individuals were estimated and their relation to water temperature and daylength during the experiment was analysed by generalized linear modelling. Water temperature varied between 11 and 30.5°C, and daylength duration between 11 h 22 min and 14 h 35 min. Sex genotyping revealed nearly balanced sex ratios of XY/YY (46%–49.1%) and XX (50.9%–54%) fish in cages 2–4 whereas the genotypic sex ratio in cage 1 was clearly biased towards XY/YY fish (60.6%). Phenotypic males ranged from 42% to 54.4% in cages 1–3. Cage 4, in turn, had significantly more phenotypic males (66%). The percentage of XX males (phenotypic male/genotypic female) was 23.1% in cage 1, decreased to a minimum of 5.4% in cage 2 and gradually increased in cages 3 and 4 to a maximum of 40.7% in the latter. The percentages of XY/YY females (phenotypic female/genotypic male) were highest in cage 1 (30%) and decreased progressively in the other cages to a significantly lower value (4.3%) in cage 4. These results generally support the findings of laboratory studies on the effect of temperature on the sex determination of this species and also provide novel evidence of a XX genotype-specific masculinizing effect of short daylength.  相似文献   

2.
Sex genotypes in mature androgenetic and control rainbow trout Oncorhynchus mykiss were determined using primed in situ labelling (PRINS) detection of 5S rDNA sequences on the X chromosomes. Three sex genotypes, corresponding to phenotypic sex, were revealed: female XX, male XY and supermale YY.  相似文献   

3.
The model teleost medaka (Oryzias latipes, d-rR.YHNI strain) was used to produce offspring of a defined sex (monosex populations) by crossing experimentally produced YY and XX males to normal females. These monosex populations had the predicted chromosomal constitution as shown by a sex chromosome-specific DNA sequence. However, in XX populations the spontaneous development of males without previous exposure to androgens was observed. Differences in the percentage of male offspring from individual XX breeding pairs indicate a possible variation of unknown genetic factors to be responsible for the development of XX males. The expression of two gonadal genes that are involved in sex differentiation, Dmrt1b(Y) and Fig1a (factor in the germ line alpha), was analyzed in monosex populations. Dmrt1b(Y) expression correlated strictly with the genotype but not the sexual phenotype. When XY juvenile fish were exposed to 17 alpha-ethynylestradiol at concentrations that induce sex reversal, Dmrt1b(Y) expression was not repressed. However, Dmrt1b(Y) was expressed in XY or YY gonads regardless of the sex and could not be detected in XX individuals. In contrast, the expression of Fig1a correlated with the phenotypic sex: Fig1a was expressed in male juvenile fish exposed to 17 alpha-ethynylestradiol and repressed in fish exposed to 17 alpha-methyltestosterone. The Dmrt1b(Y) expression appears to reflect an early and important event in sex determination and lends support to the suggested key regulatory role of the Dmrt1b(Y) gene in sex determination. This process is apparently hormone insensitive, and the expression of further downstream acting genes can be regulated (directly or indirectly) by sex steroids.  相似文献   

4.
Seabream gonadotropin-releasing hormone (sbGnRH)-the chief preoptic area-hypothalamus (POA-H) form of GnRH in tilapia is involved in sexual maturation. In this study, we investigated the qualitative changes in ontogeny of sbGnRH immunoreactivity (ir-), between sexes to understand its impending role during sex differentiation. For this, the differences in immunocytochemical localization of sbGnRH in genetically male (XY) and female (XX) fish were studied from 1 day after hatching (dah), through the critical period of sex differentiation (7-21 dah) to 40 dah and mature Nile tilapia. Specific antisera against sbGnRH were used for immunolocalization. SbGnRH ir- neurons were observed in POA-H as early as 5 and 15 dah in XY fish and XX fish, respectively. Higher ir- was detected in the POA-H of XY tilapia compared with XX population till 10 dah. There was a qualitative drop in sbGnRH ir- neurons/cell bodies in POA-H around 20 dah till 30 dah in XY population compared with other durations. SbGnRH ir- cells were detected in pituitary of XX fish by 15 dah and in XY fish around 10 dah but seemed to drop down by 20 dah in XY whereas it continued to remain steady in XX fish. The sbGnRH ir- in XY fish showed a rise from 35 dah and thence till 40 dah. This study revealed subtle differences in POA-H and pituitary sbGnRH ir- during early development between genetic male and female fish with possible implications in sex differentiation.  相似文献   

5.
The pejerrey possesses a genotypic sex determination system driven by the amhy gene and yet shows marked temperature‐dependent sex determination. Sex‐reversed XY females have been found in a naturally breeding population established in Lake Kasumigaura, Japan. These females could mate with normal XY males and generate YY “supermale” individuals that, if viable and fertile, would sire only genotypic male offspring. This study was conducted to verify the viability, gender, and fertility of YY pejerrey and to develop a molecular method for their identification. Production of YY fish was attempted by crossing a thermally sex‐reversed XY female and an XY male, and rearing the progeny until sexual maturation. To identify the presumable YY individuals, we first conducted a PCR analysis using amhy‐specific primers to screen only amhy‐positive (XY and YY) fish. This screening showed that 60.6% of the progeny was amhy‐positive, which suggested the presence of YY fish. We then conducted a second screening by qPCR in order to identify the individuals with two amhy copies in their genome. This screening revealed 13 individuals, all males, with values twice higher than the other 30 amhy‐positive fishes, suggesting they have a YY complement. This assumption as well as the viability, fertility, and “supermale” nature of these individuals was confirmed in progeny tests with XX females that yielded 100% amhy‐positive offspring. These results demonstrate that qPCR can obviate progeny test as a means to identify the genotypic sex and therefore may be useful for the survey of all three possible genotypes in wild populations.  相似文献   

6.
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the "four core genotypes," to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism.  相似文献   

7.
In order to investigate the function of gonadal somatic cells in the sex differentiation of germ cells, we produced chimera fish containing both male (XY) and female (XX) cells by means of cell transplantation between blastula embryos in the medaka, Oryzias latipes. Sexually mature chimera fish were obtained from all combinations of recipient and donor genotypes. Most chimeras developed according to the genetic sex of the recipients, whose cells are thought to be dominant in the gonads of chimeras. However, among XX/XY (recipient/donor) chimeras, we obtained three males that differentiated into the donor's sex. Genotyping of their progeny and of strain-specific DNA fragments in their testes showed that, although two of them produced progeny from only XX spermatogenic cells, their testes all contained XY cells. That is, in the two XX/XY chimeras, germ cells consisted of XX cells but testicular somatic cells contained both XX and XY cells, suggesting that the XY somatic cells induced sex reversal of the XX germ cells and the XX somatic cells. The histological examination of developing gonads of XX/XY chimera fry showed that XY donor cells affect the early sex differentiation of germ cells. These results suggest that XY somatic cells start to differentiate into male cells depending on their sex chromosome composition, and that, in the environment produced by XY somatic cells in the medaka, germ cells differentiate into male cells regardless of their sex chromosome composition.  相似文献   

8.
In Nile tilapia (Oreochromis niloticus), individuals with atypical sexual genotype are commonly used in farming (use of YY males to produce all-male offspring), but they also constitute major tools to study sex determinism mechanisms. In other species, sexual genotype and sex reversal procedures affect different aspects of biology, such as growth, behavior and reproductive success. The aim of this study was to assess the influence of sexual genotype on sperm quality in Nile tilapia. Milt characteristics were compared in XX (sex-reversed), XY and YY males in terms of gonadosomatic index, sperm count, sperm motility and duration of sperm motility. Sperm motility was measured by computer-assisted sperm analysis (CASA) quantifying several parameters: total motility, progressive motility, curvilinear velocity, straight line velocity, average path velocity and linearity. None of the sperm traits measured significantly differed between the three genotypes. Mean values of gonadosomatic index, sperm concentration and sperm motility duration of XX, XY and YY males, respectively ranged from 0.92 to 1.33%, from 1.69 to 2.22 ×109 cells mL−1 and from 18′04″ to 27′32″. Mean values of total motility and curvilinear velocity 1 min after sperm activation, respectively ranged from 53 to 58% and from 71 to 76 μm s−1 for the three genotypes. After 3 min of activity, all the sperm motility and velocity parameters dropped by half and continued to slowly decrease thereafter. Seven min after activation, only 9 to 13% of spermatozoa were still progressive. Our results prove that neither sexual genotype nor hormonal sex reversal treatments affect sperm quality in male Nile tilapias with atypical sexual genotype.  相似文献   

9.
10.
The research was aimed to elaborate a method for selection of male plants (XY, YY) and female ones (XX) as well as for identification of supermale genotypes (YY) among male phenotypes. The population obtained by self-pollination of andromonoecious plants was analysed. In order to identify the bands differentiating the male from the female genotypes, Bulk Segregant Analysis (BSA) was carried out. Primers identified by BSA analysis were used for RAPD amplification on the template of the male and female individuals. Among the products obtained by the use of primer OPB-20, some bands were linked with sex. A band of about 700 bp was found in all female plants, and in 4 phenotypically male specimens. In the male plants, the band showed a much lower intensity, compared with the female specimens. It seems that this fragment can be linked to the X chromosome in the investigated specimens. In the female specimens with XX karyotype, template duplication occurs and hence the band intensity is twice as high as in the XY karyotype. Three male plants did not include the OPB-20-700 fragment so they could potentially have the supermale (YY) karyotype. If the obtained marker proved its usefulness for identification of supermale plants, it could become a valuable tool facilitating breeding work.  相似文献   

11.
The medaka, Oryzias latipes, has an XX/XY sex determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a prime candidate for the sex-determining gene. Furthermore, the crucial role of DMY during male development was established by studying two wild-derived XY female mutants. In this study, to find new DMY and sex-determination related gene mutations, we conducted a broad survey of the genotypic sex (DMY-negative or DMY-positive) of wild fish. We examined 2274 wild-caught fish from 40 localities throughout Japan, and 730 fish from 69 wild stocks from Japan, Korea, China, and Taiwan. The phenotypic sex type agreed with the genotypic sex of most fish, while 26 DMY-positive (XY) females and 15 DMY-negative (XX) males were found from 13 and 8 localities, respectively. Sixteen XY sex-reversals from 11 localities were mated with XY males of inbred strains, and the genotypic and phenotypic sexes of the F(1) progeny were analyzed. All these XY sex-reversals produced XY females in the F(1) generation, and all F(1) XY females had the maternal Y chromosome. These results show that DMY is a common sex-determining gene in wild populations of O. latipes and that all XY sex-reversals investigated had a DMY or DMY-linked gene mutation.  相似文献   

12.
Jacking in chinook salmon (Oncorhynchus tshawytscha) is an alternative reproductive strategy in which males sexually mature at least 1 year before other members of their year class. We characterize the genetic component of this reproductive strategy using two approaches; hormonal phenotypic sex manipulation, and a half-sib breeding experiment. We 'masculinized' chinook salmon larvae with testosterone, reared them to first maturation, identified jacks and immature males based on phenotype, and genotyped all fish as male ('XY') or female ('XX') using PCR-based Y-chromosome markers. The XY males had a much higher incidence of jacking than the XX males (30.8% vs 9.9%). There was no difference in body weight, gonad weight, and plasma concentrations of testosterone and 17beta-estradiol between the two jack genotypes, although XY jacks did have a higher gonadosomatic index (GSI) than XX jacks. In the second experiment, we bred chinook salmon in two modified half-sib mating designs, and scored the number of jacks and immature fish at first maturation. Heritability of jacking was estimated using two ANOVA models: dams nested within sires, and sires nested within dams with one-half of the half-sib families common to the two models. The sire component of the additive genetic variance yielded a high heritability estimate and was significantly higher than the dam component (h(2)(sire) = 0.62 +/- 0.21; h(2)(dam) = -0.14 +/- 0.12). Our experiments both indicated a strong sex-linked component (Y-chromosome) to jacking in chinook salmon, although evidence for at least some autosomal contribution was also observed.  相似文献   

13.
Evolutionary transitions between sex‐determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature‐dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature‐dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex‐determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed‐mechanism system that has not been revealed by previous approaches. This study solves two long‐standing puzzles of the evolution of sex‐determining mechanisms by illuminating the evolutionary pathways and endpoints.  相似文献   

14.
Spinach is a popular vegetable native to central and western Asia. It is dioecious with a pair of nascent sex chromosomes. The difficulties of working with the non-recombining sex determination region of XY individuals have hindered the progress toward sequencing sex chromosomes of most dioecious species. Here we present important advances toward characterizing the non-recombining sex chromosomes in spinach. Of nearly 400 spinach accessions screened, we identified a single accession of spinach in which androdioecious XY individuals segregate YY spinach. The male and female genomes of the spinach cultivar Shami and USDA accession PI 664497 were sequenced at 12–17?× coverage. X-specific sequences were identified by comparing the depth of coverage differences between male and female alignments to a female draft genome. YY individuals were used as a negative control to validate X-specific markers found by depth of coverage analysis. Of 19 possible X chromosome sequences found by depth of coverage analysis, one was verified to be X-specific by a PCR-based marker, SpoX, which amplified genomic DNA from XX and XY, but not YY templates. Androdioecious XY individuals of accession PI 217425 (Cornell #9) were used to develop inbred lines, and at S7 generation, all XY individuals were androdioecious and all YY individuals were pure male. The sex reversal of the XY mutant to hermaphrodite is strong evidence that the sex chromosomes in spinach have a two-gene sex determination system. These results are crucial towards sequencing the X and Y chromosomes to advance sex chromosome research in spinach.  相似文献   

15.
In poikilothermic vertebrates, sex determination is sometimes influenced by environmental factors such as temperature. However, little is known about the molecular mechanisms underlying environmental sex determination. The medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Recently, it was reported that XX medaka can be sex‐reversed into phenotypic males by high water temperature (HT; 32–34°C) treatment during the sex differentiation period. Here we report that cortisol caused female‐to‐male sex reversal and that metyrapone (an inhibitor of cortisol synthesis) inhibited HT‐induced masculinization of XX medaka. HT treatment caused elevation of whole‐body levels of cortisol, while metyrapone suppressed the elevation by HT treatment during sexual differentiation. Moreover, cortisol and 33°C treatments inhibited female‐type proliferation of germ cells as well as expression of follicle‐stimulating hormone receptor (fshr) mRNA in XX medaka during sexual differentiation. These results strongly suggest that HT induces masculinization of XX medaka by elevation of cortisol level, which, in turn, causes suppression of germ cell proliferation and of fshr mRNA expression. Mol. Reprod. Dev. 77: 679–686, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
In the Nile tilapia, Oreochromis niloticus, sex determination is primarily genetic, with XX females and XY males. While the X and Y chromosomes (the largest pair) cannot be distinguished in mitotic chromosome spreads, analysis of comparative hybridization of X and Y chromosome derived probes (produced, by microdissection and DOP-PCR, from XX and YY genotypes, respectively) to different genotypes (XX, XY and YY) has demonstrated that sequence differences exist between the sex chromosomes. Here we report the characterization of these probes, showing that a significant proportion of the amplified sequences represent various transposable elements. We further demonstrate that concentrations of a number of these individual elements are found on the sex chromosomes and that the distribution of two such elements differs between the X and Y chromosomes. These findings are discussed in relation to sex chromosome differentiation in O. niloticus and to the changes expected during the early stages of sex chromosome evolution.  相似文献   

17.
Summary The genetic terminology of sex determination and sex differentiation is examined in relation to its underlying biological basis. On the assumption that the function of the testis is to produce hormones and spermatozoa, the hypothesis of a single Y-chromosomal testis-determining gene with a dominant effect is shown to run counter to the following observed facts: a lowering in testosterone levels and an increase in the incidence of undescended testes, in addition to sterility, in males with multiple X chromosomes; abnormalities of the testes in autosomal trisomies; phenotypic abnormalities of XX males apparently increasing with decreasing amounts of Y-chromosomal material; the occurrence of patients with gonadal dysgenesis and XY males with ambiguous genitalia in the same sibship; the occurrence of identical SRY mutations in patients with gonadal dysgenesis and fertile males in the same pedigree; and the development of XY female and hermaphrodite mice having the same genetic constitution. The role of X inactivation in the production of males, females and hermaphrodites in T(X;16)16H mice has previously been suggested but not unequivocally demonstrated; moreover, X inactivation cannot account for the observed bilateral asymmetry of gonadal differentiation in XY hermaphrodites in humans and mice. There is evidence for a delay in development of the supporting cells in XY mice with ovarian formation. Once testicular differentiation and male hormone secretion have begun, other Y-chromosomal genes are required to maintain spermatogenesis and to complete spermiogenesis, but these genes do not function effectively in the presence of more than one X chromosome. The impairment of spermatogenesis by many other chromosome abnormalities seems to be more severe than that of oogenesis. It is concluded that the notion of a single testis-determining gene being responsible for male sex differentiation lacks biological validity, and that the genotype of a functional, i.e. fertile, male differs from that of a functional female by the presence of multiple Y-chromosomal genes in association with but a single X chromosome. Male sex differentiation in XY individuals can be further impaired by a euploid, but inappropriate, genetic background. The genes involved in testis development may function as growth regulators in the tissues in which they are active.  相似文献   

18.
Sex determination in the Nile tilapia, Oreochromis niloticus, is primarily genetic, with XX females and XY males. A candidate sex-determining region in the terminal region of the largest chromosome pair has been identified by analysis of meiotic chromosomes. This region shows an inhibition of pairing and synapsis in the XY genotype, but not in XX or YY genotypes, suggesting that recombination is inhibited. Here we show that chromosome microdissection and subsequent amplification by degenerate oligonucleotide-primed PCR (DOP-PCR) can be used to produce in situ hybridization probes to this largest pair of O. niloticus chromosomes. Furthermore, analysis of the comparative hybridization of X and Y chromosome-derived probes to different genotypes provides the first demonstration that sequence differences exist between the sex chromosomes of O. niloticus. This provides further support for the theory that this chromosome pair is related to sex determination and further suggests that the sex chromosomes are at a very early stage of divergence.  相似文献   

19.
The birth of a baby with malformations of the genitalia urges medical action. Even in cases where the condition is not life‐threatening, the identification of the external genitalia as male or female is emotionally essential for the family, and genital malformations represent one of the most stressful situations around a newborn. The female or male configuration of the genitalia normally evolves during fetal life according to the genetic, gonadal, and hormonal sex. Disorders of sex development occur when male hormone (androgens and anti‐Müllerian hormone) secretion or action is insufficient in the 46,XY fetus or when there is an androgen excess in the 46,XX fetus. However, sex hormone defects during fetal development cannot explain all congenital malformations of the reproductive tract. This review is focused on those congenital conditions in which gonadal function and sex hormone target organ sensitivity are normal and, therefore, not responsible for the genital malformation. Furthermore, because the reproductive and urinary systems share many common pathways in embryo‐fetal development, conditions associating urogenital malformations are discussed. Birth Defects Research (Part C) 102:359–373, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The main goal of the present study was to show whether testicular cells of rainbow trout (Oncorhynchus mykiss Walbaum) either hormonally manipulated (XX males) or produced by using gamma irradiation and pressure shock (YY males, "supermales") are able to aromatize androgens into estrogens compared with the control (XY males). The expression of aromatase gene at the level of the protein and its presence in testicular tissue was investigated by means of immunohistochemistry and Western blot analysis, respectively. The positive staining for aromatase was detected in testicular cells of all trout and in efferent duct cells of XY and YY males. However, the staining intensity varied among particular trout, being strong in YY males, moderate in XY males, and weak in XX trout. It was confirmed by quantitative image analysis in which the staining intensity was expressed as relative optical density (ROD) of diaminobenzidine deposits. Significant differences were found between XY and YY trout ((**)p<0.01) and XY and XX trout ((*)p<0.05). Such differences could reflect various levels of estrogens, possibly dependent on the genetic background of the trout studied. It seems likely that differential expression of the enzyme, especially that of weak or strong intensity, causes some alterations in testicular morphology of homogametic trout. Additionally, the results indicate that an imbalance in sex hormone biosynthesis may provoke the functional alterations in testes of YY males, and, in consequence, negatively affect the fertility of "supermales".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号