首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis.  相似文献   

3.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:3,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

4.
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.Enveloped viruses enter cells by a variety of different pathways. Productive internalization of enveloped viruses with targeted cells is mediated through interactions of the viral glycoprotein(s) (GPs) with moieties on the surface of the cell. In general, enveloped viral entry occurs through viral adherence to the cell surface, interaction with a specific plasma membrane-associated receptor that results in a series of GP conformational changes leading to fusion of viral and cellular membranes, and delivery of the viral core particle into the cytoplasm. Fusion of the two membranes can occur at the plasma membrane or by uptake of the intact virions into endosomes with subsequent membrane fusion between the viral membrane and the lipid bilayer of the endocytic vesicle. Human immunodeficiency virus (HIV) is an example of a virus that fuses directly to the plasma membrane (5), whereas influenza virus must be internalized into acidified vesicles where the appropriate GP conformational changes can occur, mediating membrane fusion (21). Most enveloped viruses that enter through vesicles utilize a low-pH environment to mediate the necessary conformational changes in GP that induce membrane fusion (37).Ebola virus (EBOV) and vesicular stomatitis virus (VSV) are enveloped, single-stranded, negative-sense RNA viruses belonging to the families Filoviridae and Rhabdoviridae, respectively. Though they share similarity in genome organization and a broad tropism for a variety of cell types, they differ greatly in their pathogenicities (29, 39). EBOV causes severe hemorrhagic fever that is frequently fatal, whereas VSV infects mainly livestock, generating fluid-filled vesicles on mucosal surfaces.Interestingly, the receptor(s) that mediate entry of these two viruses have yet to be definitively identified. C-type lectins such as DC-SIGN and DC-SIGNR are thought to serve as adherence factors for EBOV (26). Other plasma membrane-associated proteins have been implicated in EBOV uptake including folate receptor alpha and the tyrosine kinase receptor Axl (6, 35, 36, 38), but the physical interaction of EBOV GP and these proteins has not been demonstrated, and cells that do not express these proteins are permissive for EBOV GP-mediated virion uptake. VSV was shown to bind ubiquitously to cells via phosphatidylserine (PS) (31). However, a more recent study reports that PS is not a receptor for VSV as no correlation was found between cell surface PS levels and VSV infection, and annexin V, which binds specifically to PS, did not inhibit infection of VSV (9).Both viruses enter cells through a low-pH-dependent, endocytosis-mediated process. A large body of evidence indicates that VSV is internalized via clathrin-coated pits, with a reduction in pH mediating reversible alterations in the GP leading to membrane fusion (40). EBOV may also enter cells by clathrin-mediated endocytosis (30), but lipid raft-associated, caveolin-mediated endocytosis has also been proposed as a mechanism of EBOV uptake (11). Low-pH events lead to cathepsin-dependent cleavage of EBOV GP that is required for productive uptake of the virus (8, 19, 33). Other low-pH-dependent events have been postulated to be required as well (33).To identify genes whose expression correlated with EBOV GP-dependent transduction, we compared the relative transduction efficiency of EBOV GP pseudotyped virions on a panel of human tumor cell lines with gene expression data from cDNA microarrays developed for the same panel of cell lines (20). The gene array data are available from the Developmental Therapeutics Program at the National Cancer Institute (NCI) website (http://dtp.nci.nih.gov/). A significant correlation was observed between expression of RhoC, a member of the small GTP-binding Rho GTPase family, and permissivity for EBOV transduction. Surprisingly, a significant correlation was also observed between VSV glycoprotein (VSVG)-mediated transduction and RhoC expression. In this study, we report that modulation of RhoC expression by transfection of expression plasmids or treatment with an inhibitor alters transduction by virions pseudotyped with either EBOV GP or VSVG and fusion of EBOV virus-like particles (VLPs). RhoC expression also significantly enhanced wild-type VSV infection. We also examine the differential effect each Rho GTPase has on nonspecific endocytotic uptake of exogenous material and on organization of the actin filament. Our findings suggest that RhoC enhances entry of EBOV GP and VSVG pseudovirions through modulation of fluid-phase endocytosis.  相似文献   

5.
6.
Vesicular stomatitis virus has been shown to bud basolaterally, and the matrix protein, but not glycoprotein, was proposed to mediate this asymmetry. Using polarized T84 monolayers, we demonstrate that no single viral protein is sufficient for polarized budding. Particles are released from the apical and basolateral surfaces and are indistinguishable, indicating that there is no apical assembly defect. We propose that aspects of host cell polarity create a more efficient budding process at the basolateral surface.  相似文献   

7.
The aim of this study was to investigate the premise that retinal pigment epithelial (RPE) cells are more permissive to recombinant adeno-associated virus (rAAV) transduction than other cells. We investigated the kinetics and mechanisms of rAAV transduction in RPE cells and found that the transduction efficiencies of cultured RPE cells HRPE51 and ARPE19 were significantly higher than those of 293 (P < 0.008) and HeLa (P < 0.025) cells. In addition, RPE cells reached maximum transduction efficiency at a much lower m.o.i. (m.o.i. 10) than 293 cells (m.o.i. 25). Competition experiments using 1 microg/ml heparin inhibited the high level of transduction in RPE cells by 30%, but additional heparin failed to reduce rAAV transduction further. Southern hybridization of low-molecular-weight DNA from transduced RPE cells indicated that 42% of single-stranded rAAV DNA was translocated into the nucleus by 2 h postinfection. By 6 h postinfection, double-stranded rAAV DNA was observed, which coincided with the onset of transgene expression. Southern and fluorescence in situ hybridization of total genomic DNA indicated that long-term transgene expression in RPE cells was maintained by the integration of rAAV into the cellular chromosome. Together, these results suggest that the high permissiveness of RPE cells is not related to the presence of heparan sulfate receptors or nuclear trafficking but may be due to an enhanced rate of second-strand synthesis and that integration in RPE cells is responsible for long-term transgene expression.  相似文献   

8.
The identity of the glycoprotein of vesicular stomatitis virus (VSV) as the spike protein has been confirmed by the removal of the spikes with a protease from Streptomyces griseus, leaving bullet-shaped particles bounded by a smooth membrane. This treatment removes the glycoprotein but does not affect the other virion proteins, apparently because they are protected from the enzyme by the lipids in the viral membrane. The proteins of phenotypically mixed, bullet-shaped virions produced by cells mixedly infected with VSV and the parainfluenza virus simian virus 5 (SV5) have been analyzed by polyacrylamide gel electrophoresis. These virions contain all the VSV proteins plus the two SV5 spike proteins, both of which are glycoproteins. The finding of the SV5 spike glycoproteins on virions with the typical morphology of VSV indicates that there is not a stringent requirement that only the VSV glycoprotein can be used to form the bullet-shaped virion. On the other hand, the SV5 nucleocapsid protein and the major non-spike protein of the SV5 envelope were not detected in the phenotypically mixed virions, and this suggests that a specific interaction between the VSV nucleocapsid and regions of the cell membrane which contain the nonglycosylated VSV envelope protein is necessary for assembly of the bullet-shaped virion.  相似文献   

9.
Vesicular stomatitis virus (VSV) vectors that express heterologous antigens have shown promise as vaccines in preclinical studies. The efficacy of VSV-based vaccines can be improved by engineering vectors that enhance innate immune responses. We previously generated a VSV vaccine vector that incorporates two enhancing strategies: an M protein mutation (M51R) that prevents the virus from suppressing host antiviral responses and a gene encoding bacterial flagellin (M51R-F vector). The rationale was that intracellular expression of flagellin would activate innate immune pathways in addition to those activated by virus alone. This was tested with dendritic cells (DCs) from mice containing deletions in key signaling molecules. Infection of DC with either M51R or M51R-F vector induced the production of interleukin-12 (IL-12) and IL-6 and increased surface expression of T cell costimulatory molecules. These responses were dramatically reduced in DCs from IPS-1−/− mice. Infection with M51R-F vector also induced the production of IL-1β. In addition, in approximately half of the DCs, M51R-F vector induced pyroptosis, a proinflammatory-type of cell death. These responses to flagellin were ablated in DCs from NLRC4−/− mice but not Toll-like receptor 5-deficient (TLR5−/−) mice, indicating that they resulted from inflammasome activation. These results demonstrate that flagellin induces additional innate immune mechanisms over those induced by VSV alone.  相似文献   

10.
Although Epstein-Barr virus (EBV) is an orally transmitted virus, viral transmission through the oropharyngeal mucosal epithelium is not well understood. In this study, we investigated how EBV traverses polarized human oral epithelial cells without causing productive infection. We found that EBV may be transcytosed through oral epithelial cells bidirectionally, from both the apical to the basolateral membranes and the basolateral to the apical membranes. Apical to basolateral EBV transcytosis was substantially reduced by amiloride, an inhibitor of macropinocytosis. Electron microscopy showed that virions were surrounded by apical surface protrusions and that virus was present in subapical vesicles. Inactivation of signaling molecules critical for macropinocytosis, including phosphatidylinositol 3-kinases, myosin light-chain kinase, Ras-related C3 botulinum toxin substrate 1, p21-activated kinase 1, ADP-ribosylation factor 6, and cell division control protein 42 homolog, led to significant reduction in EBV apical to basolateral transcytosis. In contrast, basolateral to apical EBV transcytosis was substantially reduced by nystatin, an inhibitor of caveolin-mediated virus entry. Caveolae were detected in the basolateral membranes of polarized human oral epithelial cells, and virions were detected in caveosome-like endosomes. Methyl β-cyclodextrin, an inhibitor of caveola formation, reduced EBV basolateral entry. EBV virions transcytosed in either direction were able to infect B lymphocytes. Together, these data show that EBV transmigrates across oral epithelial cells by (i) apical to basolateral transcytosis, potentially contributing to initial EBV penetration that leads to systemic infection, and (ii) basolateral to apical transcytosis, which may enable EBV secretion into saliva in EBV-infected individuals.  相似文献   

11.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

12.
At an early stage in infection, vesicular stomatitis viruses were attached to the surface of L cells by fusion of the viral and cell membranes.  相似文献   

13.
Vesicular stomatitis virions grown in baby hamster kidney (BHK-21-F) cells were found to contain hematoside (neuraminosyl-galactosyl-glucosyl-ceramide). This ganglioside, which was the only detectable glycolipid in the virion, is also the only glycolipid found in significant amount in BHK-21-F cells. Approximately 87% of the total neuraminic acid in the virion was found to be linked to protein and 13% to lipid.  相似文献   

14.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

15.
Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal.  相似文献   

16.
目的:建立一种操作简便、重复性好的体外培养BALB/c小鼠原代肺上皮细胞(AEC)的方法,探究不同发育阶段小鼠AEC中柯萨奇病毒和腺病毒受体(CAR)表达量的变化,及其对小鼠原代AEC贴壁的作用。方法:手术获取小鼠肺组织,机械法剪碎肺组织,PBS缓冲液清洗肺组织块数次去血,联合使用链霉蛋白酶和胶原酶Ⅰ消化、分离肺组织块获得单细胞悬液,差速离心逐步清除其他种类的细胞,达到纯化AEC的作用。细胞在Ⅰ型鼠尾胶原蛋白包被过的细胞板中培养,光学显微镜下观察不同发育阶段AEC贴壁、生长状态;免疫荧光法鉴定AEC,检测AEC中CAR的表达量。结果:体外获得不同发育阶段BALB/c小鼠的原代AEC;胎鼠、幼鼠AEC贴壁并开始增殖所需时间较成体鼠短;胎鼠及幼鼠AEC中CAR的表达量明显较成体鼠高。结论:建立了稳定可重复的分离、纯化、体外培养小鼠原代AEC的方法,证明了AEC中的CAR可以促进原代AEC贴壁,为完善原代细胞培养方法提供了科学依据。  相似文献   

17.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

18.
Zeng D  Zhang T  Zhou S  Hu H  Li J  Huang K  Lei Y  Wang K  Zhao Y  Liu R  Li Q  Wen Y  Huang C 《The protein journal》2011,30(5):308-317
Gastric cancer constitutes the second leading cause of mortality worldwide and the fourth most common cancer. While chemotherapy remains the primary treatment for both resectable and advanced gastric cancer, most gastric cancers are naturally resistant to anticancer drugs, rendering new therapeutic avenues in dire need. Vesicular stomatitis virus (VSV) was proved to preferentially replicate in many types of tumor cells and eventually induce apoptosis of host cells. The vesicular stomatitis virus matrix protein (MP) plays a major role in its effects. This study proved that expression of MP could effectively inhibit proliferation and induce cell death in gastric carcinoma MKN28 cells. Furthermore, we utilized a proteomics strategy to characterize proteome-wide alterations between MP-treated MKN28 lines and their untreated counterparts. A total of 97 spots were positively identified as differentially expressed, and of these 62 proteins were up-regulated, whereas 35 proteins were down-regulated. Functional analysis unraveled three significantly modified gene product subgroups: glycolytic enzymes, reactive oxygen species-associated proteins and the proteins regulating RNA transport and maturation. Expression of three altered proteins was further validated by semi-quantitative RT-PCR or/and western blotting. Furthermore, we demonstrated that MP expression could induce rapid intracellular ROS accumulation in MKN28 cells. These results provide evidence for the anti-cancer potential of MP, and a novel MP-mediated apoptotic signaling pathway is proposed. Our findings are considered a significant step toward a better understanding the mechanism of MP-induced anti-cancer effect.  相似文献   

19.
Defective particles were the major product after undiluted passage of certain temperature-sensitive (ts) mutants of the Indiana C strain of vesicular stomatitis virus in BHK-21 cells at the permissive temperature (31 C). Essentially homogeneous preparations of defective particles were obtained with the wild-type and individual ts mutants. The defective particles associated with some of the ts mutants, however, were morphologically and physically distinguishable from wild type and from each other. All varieties of defective particle interfered with the multiplication of mutant and wild-type virus at the permissive temperature at early times of infection but failed to complement virions of different complementation groups at the restrictive temperature (39 C) at any time during infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号