首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Xu  E R Kantrowitz 《Biochemistry》1989,28(26):9937-9943
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, the carbonyl group of carbamoyl phosphate interacts with Thr-55, Arg-105, and His-134. Site-specific mutagenesis was used to create a mutant version of the enzyme in which Thr-55 was replaced by alanine in order to help define the role of this residue in the catalytic mechanism. The Thr-55----Ala holoenzyme exhibits a 4.7-fold reduction in maximal observed specific activity, no alteration in aspartate cooperativity, and a small reduction in carbamoyl phosphate cooperativity. The mutation also causes 14-fold and 35-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy has shown that saturating carbamoyl phosphate does not induce a conformational change in the Thr-55----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Thr-55----Ala catalytic subunit are altered to a greater extent than the mutant holoenzyme. The mutant catalytic subunit cannot be saturated by either substrate under the experimental conditions. Furthermore, as opposed to the wild-type catalytic subunit, the Thr-55----Ala catalytic subunit shows cooperativity for aspartate and can be activated by N-(phosphonoacetyl)-L-aspartate in the presence of low concentrations of aspartate and high concentrations of carbamoyl phosphate. As deduced by circular dichroism spectroscopy, the conformation of the Thr-55----Ala catalytic subunit in the absence of active-site ligands is distinctly different from the wild-type catalytic subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Stabilization of the T and R allosteric states of Escherichia coli aspartate transcarbamoylase is governed by specific intra- and interchain interactions. The six interchain interactions between Glu-239 in one catalytic chain of one catalytic trimer with both Lys-164 and Tyr-165 of a different catalytic chain in the other catalytic trimer have been shown to be involved in the stabilization of the T state. In this study a series of hybrid versions of aspartate transcarbamoylase was studied to determine the minimum number of these Glu-239 interactions necessary to maintain homotropic cooperativity and the T allosteric state. Hybrids with zero, one, and two Glu-239 stabilizing interactions do not exhibit cooperativity, whereas the hybrids with three or more Glu-239 stabilizing interactions exhibit cooperativity. The hybrid enzymes with one or more of the Glu-239 stabilizing interactions also exhibit heterotropic interactions. Two hybrids with three Glu-239 stabilizing interactions, in different geometric relationships, had identical properties. From this and previous studies, it is concluded that the 239 stabilizing interactions play a critical role in the manifestation of homotropic cooperativity in aspartate transcarbamoylase by the stabilization of the T state of the enzyme. As substrate binding energy is utilized, more and more of the T state stabilizing interactions are relaxed, and finally the enzyme shifts to the R state. In the case of the Glu-239 stabilizing interactions more than three of the interactions must be broken before the enzyme shifts to the R state. The interactions between the catalytic and regulatory chains and between the two catalytic trimers of aspartate transcarbamoylase provide a global set of interlocking interactions that stabilize the T and R states of the enzyme. The substrate-induced local conformational changes observed in the structure of the isolated catalytic subunit drive the quaternary T to R transition of aspartate transcarbamoylase and functionally induced homotropic cooperativity.  相似文献   

3.
Site-specific mutagenesis was used to modify an amino acid residue of the catalytic trimer of aspartate transcarbamoylase thought to be at the active site. Tyrosine 165 of the catalytic chain was replaced by a serine residue. This mutation substantially reduces but does not entirely abolish the catalytic activity of the holoenzyme and the isolated catalytic trimer. Km for aspartate for the mutant catalytic trimer is 12-fold higher than for the wild type. Vmax is reduced by a factor of 4 and Kd for carbamoylphosphate is increased 3-fold in the mutant. Although these results suggest that tyrosine 165 is at the active site, they demonstrate that the residue is not essential for catalysis.  相似文献   

4.
In aspartate transcarbamylase (ATCase) each regulatory chain interacts with two catalytic chains each one belonging to a different trimeric catalytic subunit (R1-C1 and R1-C4 types of interactions as defined in Fig. 1). In order to investigate the interchain contacts that are involved in the co-operative interactions between the catalytic sites, a series of modified forms of the enzyme was prepared by site-directed mutagenesis. The amino acid replacements were devised on the basis of the previously described properties of an altered form of ATCase (pAR5-ATCase) which lacks the homotropic co-operative interactions between the catalytic sites. The results obtained (enzyme kinetics, bisubstrate analog influence and pH studies) show that the R1-C4 interaction is essential for the establishment of the enzyme conformation that has a low affinity for aspartate (T state), and consequently for the existence of co-operativity between the catalytic sites. This interaction involves the 236-250 region of the aspartate binding domain of the catalytic chain (240s loop) and the 143-149 region of the regulatory chain which comprises helix H3'.  相似文献   

5.
The aspartate:2-oxoglutarate aminotransferase from the protozoon Trichomonas vaginalis exists as a mixture of sub-forms of identical Mr and amino acid composition, and of similar catalytic properties. The amino acid composition closely resembles that of aspartate aminotransferase from prokaryotic and vertebrate sources. Some molecular and catalytic properties of the T. vaginalis aspartate aminotransferase are compared with those of the cytoplasmic pig heart enzyme. A major difference is in the ability of the trichomonal enzyme to transaminate aromatic amino acids and 2-oxo acids. A range of inhibitors have been used to compare the active-site regions of the T. vaginalis and cytoplasmic pig heart aspartate aminotransferases.  相似文献   

6.
Before the structure of cAMP-dependent protein kinase had been solved, sequence alignments had already suggested that several highly conserved peptide motifs described as kinase subdomains I through XI might play some functional role in catalysis. Crystal structures of several members of the protein kinase superfamily have suggested that the nearly invariant aspartate residue within subdomain IX contributes to the conformational stability of the catalytic loop by forming hydrogen bonds with backbone amides within subdomain VI. However, substitution of this aspartate with alanine or threonine in some protein kinases have indicated that these interactions are not essential for activity. In contrast, we show here that conversion of this aspartate to arginine abolished the catalytic activity of the Fer protein-tyrosine kinase when expressed either in mammalian cells or in bacteria. Structural modeling predicted that the catalytic loop of the FerD743R mutant was disrupted by van der Waal's repulsion between the side chains of the substituted arginine residue in subdomain IX and histidine-683 in subdomain VI. The FerD743R mutant model predicted a shift in the peptide backbone of the catalytic loop, and an outward rotation of histidine-683 and arginine-684 side chains. However, the position and orientation of the presumptive catalytic base, aspartate-685, was not substantially changed. The proposed model explains how substitutions of some, but not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX.  相似文献   

7.
8.
13C kinetic isotope effects have been measured in carbamyl phosphate for the reaction catalyzed by aspartate transcarbamylase. For the holoenzyme, the value was 1.0217 at zero aspartate, but unity at infinite aspartate, with 4.8 mM aspartate eliminating half of the isotope effect. This pattern proves an ordered kinetic mechanism, with carbamyl phosphate adding before aspartate. The same parameters were observed in the presence of ATP or CTP, showing that there is only one form of active enzyme present, regardless of the presence or absence of allosteric modifiers. These data support the Monod model of allosteric behavior in which the equilibrium between fully active and inactive enzyme is perturbed by selective binding interactions of substrates and modifiers, and there are no enzyme forms having partial activity. Isolated catalytic subunits of the enzyme showed similar 13C isotope effects (1.0240 at zero aspartate, 1.0039 at infinite aspartate, 3.8 mM aspartate causing half of the change from one value to the other), but the finite isotope effect at infinite aspartate shows that the kinetic mechanism is now partly random. With the very slow and poorly bound aspartate analog cysteine sulfinate, the 13C isotope effects were 1.039 for both holoenzyme and catalytic subunits and were not decreased significantly by high levels of cysteine sulfinate. The value of 1.039 is probably close to the intrinsic isotope effect on the chemical reaction, while the kinetic mechanism with this substrate is now fully random because the chemistry is so much slower than release of either reactant from the enzyme.  相似文献   

9.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the holoenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

10.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the haloenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

11.
A NMR method for quantifying the catalytic efficiency and stereospecificity of the exchange of the alpha-protons of glycine is described. It is used to determine how the binding of the alpha-carboxylate group of amino acids contributes to the stereospecificity of exchange reactions catalysed by tryptophan synthase, serine hydroxymethyltransferase and a catalytic antibody utilising pyridoxal-5'-phosphate (PLP) as a cofactor. Using larger substrates, it is shown how the size of the amino acid side chain contributes to the stereospecificity of exchange. Mutants of aspartate aminotransferase are used to determine how substrate binding controls the catalytic efficiency and stereospecificity of the exchange of the alpha-protons of aspartate and glutamate. Evidence is presented which shows that with serine hydroxymethyltransferase, L-norleucine is not bound at the same catalytic site as glycine. Finally the catalytic efficiency and stereospecificity of the alpha-proton exchange reactions catalysed by all the PLP-dependent catalysts examined are compared.  相似文献   

12.
The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.  相似文献   

13.
The amino acid residue Tyr-165C of aspartate transcarbamoylase (EC 2.1.3.2) of Escherichia coli has been proposed to be involved in the transition from the T-state to the R-state upon binding of the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. Site-specific mutagenesis has been used to substitute phenylalanine for tyrosine, thus maintaining the aromatic R-group but removing the charged hydroxyl moiety. This mutation dramatically altered the aspartate requirements for the holoenzyme but did not substantially affect the homotropic or heterotropic characteristics of the oligomer. The aspartate requirements for half-maximal saturation increased from 5.5 mM at pH 7.0 for the native holoenzyme to approximately 90 mM in the mutant enzyme. Nonetheless, estimates of the kinetic cooperativity index remained similar (Hill coefficients: Tyr-165C, n = 2.1; Phe-165C, n = 2.5). CTP inhibited both enzymes approximately 70% and ATP activated approximately 40% at the aspartate concentrations required for half-maximal saturation (5 and 90 mM, respectively). The maximal velocity of the mutant holoenzyme is almost identical to that of the wild-type enzyme. The phenylalanine substitution does not affect the stability of the holoenzyme to heat or mercurials, and the Vmax of the catalytic trimer was 444% greater than that of the holoenzyme. Upon dissociation of the wild-type native enzyme into catalytic trimers, the Vmax increased 450%. The Km for aspartate in the separated catalytic trimer is approximately 2-fold higher than for the native catalytic trimer (16.5 versus 8 mM at pH 7.0). It is clear from the data that although Tyr-165C is not directly involved in the active site of the enzyme, it does play a pivotal role in catalytic transitions of the holoenzyme. In addition, the homotropic and heterotropic characteristics of the enzyme do not seem to be altered by the substitution of phenylalanine for Tyr-165C in the E. coli aspartate transcarbamoylase, although other substitutions have been reported (Robey, E. H., and Schachman, H. K. (1984) J. Biol. Chem. 259, 11180-11183) which show more complex effects.  相似文献   

14.
W Xu  E R Kantrowitz 《Biochemistry》1991,30(9):2535-2542
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, oxygens of the phosphate of carbamoyl phosphate interact with Ser-52, Thr-53 (backbone), Arg-54, Thr-55, and Arg-105 from one catalytic chain, as well as Ser-80 and Lys-84 from an adjacent chain in the same catalytic subunit. In order to define the role of Ser-52 and Ser-80 in the catalytic mechanism, two mutant versions of the enzyme were created with Ser-52 or Ser-80 replaced by alanine. The Ser-52----Ala holoenzyme exhibits a 670-fold reduction in maximal observed specific activity, and a loss of both aspartate and carbamoyl phosphate cooperativity. This mutation also causes 23-fold and 5.6-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy indicates that saturating carbamoyl phosphate does not induce the same conformational change in the Ser-52----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Ser-52----Ala catalytic subunit are altered to a lesser extent than the mutant holoenzyme. The maximal observed specific activity is reduced by 89-fold, and the carbamoyl phosphate concentration at half the maximal observed velocity increases by 53-fold while the aspartate concentration at half the maximal observed velocity increases 6-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Atomic models representing the electron density of two crystalline forms of aspartate carbamoyltransferase from Escherichia coli are reported here. The unliganded form (R32 crystal symmetry) and the CTP-liganded form (P321 crystal symmetry) have been refined independently at resolutions of 3.0 å and 2.8 Å, respectively, each to a crystallographic R-factor of 27%. The molecular models include at least 95% of the theoretical number of atoms for the aspartate Carbamoyltransferase molecule based on chemical sequence information. We provide details of the refinement process for the two structures, and an evaluation of the accuracy of the molecular models.For the most part, the regulatory and catalytic chains of the unliganded enzyme and the CTP-liganded form are in similar conformations. Large conformational differences in the CTP and native forms exist, however, specifically in the region of CTP binding to the regulatory chain. In addition, a segment of ten amino acid residues, which includes Lys83 and Lys84 of the catalytic chain, is disordered in the CTP-liganded form, in contrast to the native structure, where the same residues have refined well into density.Each catalytic monomer of aspartate carbamoyltransferase is in contact with three catalytic chains and two regulatory monomers. Each regulatory monomer borders on one other regulatory chain and two catalytic chains. The catalytic trimera are in contact in the hexamer; residues important to homotropic effects and catalysis (Tyr165 and Tyr232) are integral parts of the interface. We present a thorough survey of interface regions, cataloging polar interactions between sidechains throughout the molecule.We discuss, in context with the present structures, the chemical modifications and mutations of the enzyme. Highlighted specifically are Cys47, Tyr165 and Tyr232, Lys83, Lys84, Trp209 and Trp279 and Gly128, residues of demonstrated importance to the catalytic of regulatory function or aspartate carbamoyltransferase. The spatial arrangement of “active site” residues argues for a catalytic pocket shared between two monomers within catalytic subunit.  相似文献   

16.
Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB’s catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.  相似文献   

17.
Each of two previously isolated strains of Escherichia coli containing a single nonsense codon within the pyrB gene was suppressed with four different nonsense suppressors. The kinetic analysis using crude extracts of these nonsense-suppressed strains indicated that the mutant aspartate transcarbamylases had altered cooperativity and affinity for aspartate as judged by the substrate concentration at half of the maximal velocity. Both pyrB genes were cloned and then sequenced. In both cases, a single base change was identified which converted a glutamine GAC codon into a TAC nonsense codon. Both mutations occurred in the catalytic chain of aspartate transcarbamylase and were identified at positions 108 and 246. The glutamine at position 108 in the wild-type structure is located at the interface between the catalytic and regulatory chains and is involved in a number of interactions with backbone and side chains of the regulatory chain. The glutamine at position 246 in the wild-type structure is located in the 240s loop of the enzyme. Two additional mutant versions of aspartate transcarbamylase were created by site-directed mutagenesis to further investigate the 108-position in the structure, a glutamine to tyrosine substitution at position 108 of the catalytic chain, and an asparagine to glycine change at position 113 of the regulatory chain, a residue which interacts directly with glutamine-108 in the wild-type structure. Both mutant enzymes have reduced affinity for aspartate. However, the Tyr-108 mutant enzyme exhibits a reduced Hill coefficient while the Gly-113 enzyme exhibits an increased Hill coefficient. The response to the allosteric effectors ATP and CTP is also changed for both the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
There exists a d-enantiomer of aspartic acid in lactic acid bacteria and several hyperthermophilic archaea, which is biosynthesized from the l-enantiomer by aspartate racemase. Aspartate racemase is a representative pyridoxal 5'-phosphate (PLP)-independent amino acid racemase. The "two-base" catalytic mechanism has been proposed for this type of racemase, in which a pair of cysteine residues are utilized as the conjugated catalytic acid and base. We have determined the three-dimensional structure of aspartate racemase from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 at 1.9 A resolution by X-ray crystallography and refined it to a crystallographic R factor of 19.4% (R(free) of 22.2%). This is the first structure reported for aspartate racemase, indeed for any amino acid racemase from archaea. The crystal structure revealed that this enzyme forms a stable dimeric structure with a strong three-layered inter-subunit interaction, and that its subunit consists of two structurally homologous alpha/beta domains, each containing a four-stranded parallel beta-sheet flanked by six alpha-helices. Two strictly conserved cysteine residues (Cys82 and Cys194), which have been shown biochemically to act as catalytic acid and base, are located on both sides of a cleft between the two domains. The spatial arrangement of these two cysteine residues supports the "two-base" mechanism but disproves the previous hypothesis that the active site of aspartate racemase is located at the dimeric interface. The structure revealed a unique pseudo mirror-symmetry in the spatial arrangement of the residues around the active site, which may explain the molecular recognition mechanism of the mirror-symmetric aspartate enantiomers by the non-mirror-symmetric aspartate racemase.  相似文献   

19.
The allosteric transition of Escherichia coli aspartate transcarbamylase involves significant alterations in structure at both the quaternary and tertiary levels. On the tertiary level, the 240s loop (residues 230-245 of the catalytic chain) repositions, influencing the conformation of Arg-229, a residue near the aspartate binding site. In the T state, Arg-229 is bent out of the active site and may be stabilized in this position by an interaction with Glu-272. In the R state, the conformation of Arg-229 changes, allowing it to interact with the beta-carboxylate of aspartate, and is stabilized in this position by a specific interaction with Glu-233. In order to ascertain the function of Arg-229, Glu-233, and Glu-272 in the catalytic and cooperative interactions of the enzyme, three mutant enzymes were created by site-specific mutagenesis. Arg-229 was replaced by Ala, while both Glu-233 and Glu-272 were replaced by Ser. The Arg-229----Ala and Glu-233----Ser enzymes exhibit 10,000-fold and 80-fold decreases in maximal activity, respectively, and they both exhibit a 2-fold increase in the aspartate concentration at half the maximal observed velocity, [S]0.5. The Arg-229----Ala enzyme still exhibits substantial homotropic cooperativity, but all cooperativity is lost in the Glu-233----Ser enzyme. The Glu-233----Ser enzyme also shows a 4-fold decrease in the carbamyl phosphate [S]0.5, while the Arg-229----Ala enzyme shows no change in the carbamyl phosphate [S]0.5 compared to the wild-type enzyme. The Glu-272 to Ser mutation results in a slight reduction in maximal activity, an increase in [S]0.5 for both aspartate and carbamyl phosphate, and reduced cooperativity. Analysis of the isolated catalytic subunits from these three mutant enzymes reveals that in each case the changes in the kinetic properties of the isolated catalytic subunit are similar to the changes caused by the mutation in the holoenzyme. PALA was able to activate the Glu-233----Ser enzyme, at low aspartate concentrations, even though the mutant holoenzyme did not exhibit any cooperativity, indicating that cooperative interactions still exist between the active sites in this enzyme. It is proposed that Glu-233 of the 240s loop helps create the high-activity-high-affinity R state by positioning the side chain of Arg-229 for aspartate binding while Glu-272 helps stabilize the low-activity-low-affinity T state by positioning the side chain of Arg-229 so that it cannot interact with aspartate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Aspartate-162 in the catalytic chain of aspartate transcarbamoylase is conserved in all of the sequences determined to date. The X-ray structure of the Escherichia coli enzyme indicates that this residue is located in a loop region (160's loop) that is near the interface between two catalytic trimers and is also close to the active site. In order to test whether this conserved residue is important for support of the internal architecture of the enzyme and/or involved in transmitting homotropic and heterotropic effects, the function of this residue was studied using a mutant version of the enzyme with an alanine at this position (Asp-162----Ala) created by site-specific mutagenesis. The Asp-162----Ala enzyme exhibits a 400-fold reduction in the maximal observed specific activity, approximately 2-fold and 10-fold decreases in the aspartate and carbamoyl phosphate concentrations at half the maximal observed specific activity respectively, a loss of homotropic cooperativity, and loss of response to the regulatory nucleotides ATP and CTP. Furthermore, equilibrium binding studies indicate that the affinity of the mutant enzyme for CTP is reduced more than 10-fold. The isolated catalytic subunit exhibits a 660-fold reduction in maximal observed specific activity compared to the wild-type catalytic subunit. The Km values for aspartate and carbamoyl phosphate for the Asp-162----Ala catalytic subunit were within 2-fold of the values observed for the wild-type catalytic subunit. Computer simulations of the energy-minimized mutant enzyme indicate that the space once occupied by the side chain of Asp-162 may be filled by other side chains, suggesting that Asp-162 is important for stabilizing the internal architecture of the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号