首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.  相似文献   

2.
Cytokines and hematopoietic stem cell mobilization   总被引:7,自引:0,他引:7  
Hematopoietic stem cell transplantation (HSCT) has become the standard of care for the treatment of many hematologic malignancies, chemotherapy sensitive relapsed acute leukemias or lymphomas, multiple myeloma; and for some non-malignant diseases such as aplastic anemia and immunodeficient states. The hematopoietic stem cell (HSC) resides in the bone marrow (BM). A number of chemokines and cytokines have been shown in vivo and in clinical trials to enhance trafficking of HSC into the peripheral blood. This process, termed stem cell mobilization, results in the collection of HSC via apheresis for both autologous and allogeneic transplantation. Enhanced understanding of HSC biology, processes involved in HSC microenvironmental interactions and the critical ligands, receptors and cellular proteases involved in HSC homing and mobilization, with an emphasis on G-CSF induced HSC mobilization, form the basis of this review. We will describe the key features and dynamic processes involved in HSC mobilization and focus on the key ligand-receptor pairs including CXCR4/SDF1, VLA4/VCAM1, CD62L/PSGL, CD44/HA, and Kit/KL. In addition we will describe food and drug administration (FDA) approved and agents currently in clinical development for enhancing HSC mobilization and transplantation outcomes.  相似文献   

3.
The hematopoietic system is a distributed tissue that consists of functionally distinct cell types continuously produced through hematopoietic stem cell (HSC) differentiation. Combining genomic and phenotypic data with high‐content experiments, we have built a directional cell–cell communication network between 12 cell types isolated from human umbilical cord blood. Network structure analysis revealed that ligand production is cell type dependent, whereas ligand binding is promiscuous. Consequently, additional control strategies such as cell frequency modulation and compartmentalization were needed to achieve specificity in HSC fate regulation. Incorporating the in vitro effects (quiescence, self‐renewal, proliferation, or differentiation) of 27 HSC binding ligands into the topology of the cell–cell communication network allowed coding of cell type‐dependent feedback regulation of HSC fate. Pathway enrichment analysis identified intracellular regulatory motifs enriched in these cell type‐ and ligand‐coupled responses. This study uncovers cellular mechanisms of hematopoietic cell feedback in HSC fate regulation, provides insight into the design principles of the human hematopoietic system, and serves as a foundation for the analysis of intercellular regulation in multicellular systems.  相似文献   

4.
5.
张岩 《生命科学》2009,(5):679-689
造血干细胞(hematopoietic stem cell,HSC)是目前研究方法最为多样、研究技术手段最为成熟的一类组织干细胞,并且已经被成功运用于临床上对白血病以及先天性免疫缺陷等疾病的治疗。近年来,通过对一系列“转基因”与“基因敲除”小鼠模型的分析,人们对造血干细胞在胚胎早期发育过程中的发生与起源、造血干细胞“自我更新”与“定向分化”的调节机制、骨髓中造血干细胞的微环境(niche)对造血干细胞功能维持的调控,以及造血干细胞与白血病干细胞之间的相互关系等诸多方面都取得了很大的进展。如何实现造血干细胞的体外长期培养与扩增,实现胚胎干细胞(embryonic stem cell,ESC)或诱导多能干细胞(induced pluripotent stem cell,iPS细胞)向造血干细胞进行有效的定向分化,以及探索造血干细胞在病理状态(如癌症、贫血、衰老等)或应激状态下(如炎症与感染、组织损伤、代谢异常等)的功能变化,都将会是今后造血干细胞研究的重要方向。  相似文献   

6.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

7.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
During ontogeny, hematopoietic stem cells (HSC) become committed outside of hematopoietic organs. Once held to emerge from the yolk sac, they are currently thought to originate from the early aorta. However we now show that the allantois in the avian embryo and the placenta in the mouse embryo produce HSC in very large numbers. These sites thus appear to have a central role in the process of HSC emergence.  相似文献   

9.

Background

Hematopoietic stem cells (HSCs) are a population of multipotent cells that can self-renew and differentiate into all blood lineages. HSC development must be tightly controlled from cell fate determination to self-maintenance during adulthood. This involves a panel of important developmental signaling pathways and other factors which act synergistically within the HSC population and/or in the HSC niche. Genetically conserved processes of HSC development plus many other developmental advantages make the zebrafish an ideal model organism to elucidate the regulatory mechanisms underlying HSC programming.

Scope of review

This review summarizes recent progress on zebrafish HSCs with particular focus on how developmental signaling controls hemogenic endothelium-derived HSC development. We also describe the interaction of different signaling pathways during these processes.

Major conclusions

The hematopoietic stem cell system is a paradigm for stem cell studies. Use of the zebrafish model to study signaling regulation of HSCs in vivo has resulted in a great deal of information concerning HSC biology in vertebrates.

General significance

These new findings facilitate a better understanding of molecular mechanisms of HSC programming, and will provide possible new strategies for the treatment of HSC-related hematological diseases, such as leukemia. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

10.
Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.  相似文献   

11.
Considerable effort has been made in recent years in defining the embryonic origin of the hematopoietic stem cell (HSC). Using transgenic mouse models, a number of genes that regulate the formation, self-renewal, or differentiation of HSCs have been identified. Of particular interest, it has recently been shown that key regulators of definitive blood formation played a crucial role in adult HSC development. Specifically, the use of some of these regulatory molecules has dramatically improved the potential of adult HSC expansion. Furthermore, the elucidation of the molecular phenotype of the HSC has just begun. Finally, unexpected degrees of HSC developmental or differentiation plasticity have emerged. In this review, we will summarize the recent advances made in the human HSC field, and we will examine the impacts these discoveries may have clinically and on our understanding of the organization of the human hematopoietic system.  相似文献   

12.
Understanding the in vivo regulation of hematopoietic stem cells (HSCs) will be critical to identifying key factors involved in the regulation of HSC self‐renewal and differentiation. The niche (microenvironment) in which HSCs reside has recently regained attention accompanied by a dramatic increase in the understanding of the cellular constituents of the bone marrow HSC niche. The use of sophisticated genetic models allowing modulation of specific lineages has demonstrated roles for mesenchymal‐derived elements such as osteoblasts and adipocytes, vasculature, nerves, and a range of hematopoietic progeny of the HSC as being participants in the regulation of the bone marrow microenvironment. Whilst providing significant insight into the cellular composition of the niche, is it possible to manipulate any given cell lineage in vivo without impacting, knowingly or unknowingly, on those that remain? J. Cell. Biochem. 112: 1486–1490, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.  相似文献   

14.
15.
The role of apoptosis in regulating hematopoietic stem cell numbers   总被引:3,自引:0,他引:3  
The importance of apoptosis, in combination with proliferation, in maintaining stable populations has become increasingly clear in the last decade. Perturbation of either of these processes can have serious consequences, and result in a variety of disorders. Moreover, as the players and pathways gradually emerge, it turns out that there are strong connections in the regulation of cell cycle progression and apoptosis. Apoptosis, proliferation, and the disorders resulting from aberrant regulation have been studied in a variety of cell types and systems. Hematopoietic stem cells (HSC) are defined as primitive mesenchymal cells that are capable of both self-renewal and differentiation into the various cell lineages that constitute the functioning hematopoietic system. Many (but certainly not all) mature hematopoietic cells are relatively short-lived, sometimes with a half-life in the order of days. Homeostasis requires the production of 108 (mouse) to 1011 (human) cells each day. All of these cells are ultimately derived from HSC that mostly reside in the bone marrow in adult mammals. The study of the regulation of HSC numbers has focussed mainly on the choice between self-renewal and differentiation, symmetric and asymmetric cell divisions. Recently, however, it has been directly demonstrated that apoptosis plays an important role in the regulation of hematopoietic stem cells in vivo.  相似文献   

16.
17.
Hematopoietic stem cells (HSCs) can self-renew and differentiate into all cell types of the blood. This is therapeutically important as HSC transplants can provide a curative effect for blood cancers and disorders. The process by which HSCs develop has been the subject of extensive research in a variety of model organisms; however, efforts to produce bonafide HSCs from pluripotent precursors capable of long-term multilineage reconstitution have fallen short. Studies in zebrafish, chicken, and mice have been instrumental in guiding efforts to derive HSCs from human pluripotent stem cells and have identified a complex set of molecular signals and cellular interactions mediated by such developmental regulators as fibroblast growth factor, Notch, transforming growth factor beta (TGFβ), and Wnt, which collectively promote the stepwise developmental progression toward mature HSCs. Tight temporal and spatial control of these signals is critical to generate the appropriate numbers of HSCs needed for the life of the organism. The role of the Wnt family of signaling proteins in hematopoietic development has been the subject of many studies owing in part to the complex nature of its signaling mechanisms. By integrating cell fate specification with cell polarity establishment, Wnt is uniquely capable of controlling complex biological processes, including at multiple stages of embryonic HSC development, from HSC specification to emergence from the hemogenic epithelium to subsequent expansion. This review highlights key signaling events where specific Wnt signals instruct and guide hematopoietic development in both zebrafish and mice and extend these findings to current efforts of generating HSCs in vitro.  相似文献   

18.
刘廷析 《生命科学》2009,(5):675-678
造血干细胞(hematopoietic stem cell,HSC)是成体干细胞研究领域的范式。对造血干细胞自我更新和不对称分裂分子遗传学机制的诠释,将不仅帮助理解成体干细胞“干性”维持的发育遗传学机制,也将对白血病干细胞和其他类型肿瘤干细胞的发育起源及开发针对肿瘤干细胞的靶向治疗模式产生深远的影响。  相似文献   

19.

Background

Hematopoietic stem cell (HSC) niche of the BM provides a specialized microenvironment for the regulation of HSCs. The strict control of HSCs by the niche coordinates the balance between the proliferation and the differentiation of HSCs for the homeostasis of the blood system in steady states and during stress hematopoiesis. The osteoblastic and vascular niches are the classically identified constituents of the BM niche.

Scope of review

Recent research broadens our understanding of the BM niche as an assembly of multiple niche cells within the BM. We provide an overview of the HSC niche aiming to delineate the defined and possible niche cell interactions which collectively modulate the HSC integrity.

Major conclusions

Multiple cells in the BM, including osteoblasts, vascular endothelia, perivascular mesenchymal cells and HSC progeny cells, function conjunctively as niche cells to regulate HSCs.

General significance

The study of HSC niche cells and their functions provides insights into stem cell biology and also may be extrapolated into the study of cancer stem cells. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

20.
Mesenchymal stem cells (MSCs) have great clinical potential for the replacement and regeneration of diseased or damaged tissue. They are especially important in the production of the hematopoietic microenvironment, which regulates the maintenance and differentiation of hematopoietic stem cells (HSCs). In the adult, MSCs and their differentiating progeny are found predominantly in the bone marrow (BM). However, it is as yet unknown in which embryonic tissues MSCs reside and whether there is a localized association of these cells within hematopoietic sites during development. To investigate the embryonic origins of these cells, we performed anatomical mapping and frequency analysis of mesenchymal progenitors at several stages of mouse ontogeny. We report here the presence of mesenchymal progenitors, with the potential to differentiate into cells of the osteogenic, adipogenic and chondrogenic lineages, in most of the sites harboring hematopoietic cells. They first appear in the aorta-gonad-mesonephros (AGM) region at the time of HSC emergence. However, at this developmental stage, their presence is independent of HSC activity. They increase numerically during development to a plateau level found in adult BM. Additionally, mesenchymal progenitors are found in the embryonic circulation. Taken together, these data show a co-localization of mesenchymal progenitor/stem cells to the major hematopoietic territories, suggesting that, as development proceeds, mesenchymal progenitors expand within these potent hematopoietic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号