共查询到20条相似文献,搜索用时 0 毫秒
1.
Group II introns are self-splicing RNA molecules that are of considerable interest as ribozymes, mobile genetic elements and examples of folded RNA. Although these introns are among the most common ribozymes, little is known about the chemical and structural determinants for their reactivity. By using nucleotide analog interference mapping (NAIM), it has been possible to identify the nucleotide functional groups (Rp phosphoryls, 2'-hydroxyls, guanosine exocyclic amines, adenosine N7 and N6) that are most important for composing the catalytic core of the intron. The majority of interference effects occur in clusters located within the two catalytically essential Domains 1 and 5 (D1 and D5). Collectively, the NAIM results indicate that key tetraloop-receptor interactions display a specific chemical signature, that the epsilon-epsilon' interaction includes an elaborate array of additional features and that one of the most important core structures is an uncharacterized three-way junction in D1. By combining NAIM with site-directed mutagenesis, a new tertiary interaction, kappa-kappa', was identified between this region and the most catalytically important section of D5, adjacent to the AGC triad in stem 1. Together with the known zeta-zeta' interaction, kappa-kappa' anchors D5 firmly into the D1 scaffold, thereby presenting chemically essential D5 functionalities for participation in catalysis. 相似文献
2.
Sequence requirements for branch formation in a group II self-splicing intron. 总被引:1,自引:1,他引:1
下载免费PDF全文

Evidence is presented for the existence of a specific intron-intron interaction, necessary for the formation of the branched product in the self-splicing reaction of a group II yeast mitochondrial intron. Trans-splicing reactions involving two RNA molecules (5' exon with covalently linked regions of intron and intron with covalently linked 3' exon) show that the presence of portions of intron domain I on the 5' molecule is necessary for the formation of branched products which are not seen with shorter 5' molecules. Modification/interference reactions show regions necesary for branch-formation and support a major role for specific regions of intron domain I. Further experiments, utilizing a truncated 3' molecule that is missing the conserved branchpoint nucleotide, indicate that domain VI may be required for a successful domain I interaction. A model for the formation of a proper branched structure includes implications for both cis and trans configurations. 相似文献
3.
Effect of deletions at structural domains of group II intron bI1 on self-splicing in vitro 总被引:3,自引:0,他引:3
Some group II introns can undergo a protein-independent splicing reaction with the basic reaction pathway similar to nuclear pre-mRNA splicing and the catalytic functions of some of the structural components have been determined. To identify further functional domains, we have generated an ensemble of partial and complete deletions of domains I, II, III and IV of the self-splicing group II intron bI1 from yeast mitochondria and studied their effects on the splicing reaction in vitro. Our results indicate that domains II and IV, which vary considerably in length and structure among group II introns, do not play a direct role in catalysis but mainly help to ensure the proper interaction between upstream and downstream catalytically active structural elements. Deletions of sub-domains of domain I and domain III indicate that these elements are involved in 5' cleavage by hydrolysis and in a reaction in trans (exon reopening), and that this function can be inhibited without affecting the normal 5' cleavage by transesterification. Yet, we infer that the helical structures affected by the mutational alterations might not contribute to this reaction mode per se but that changes within local secondary structures perturb the internal conformation of the ribozyme. Furthermore, we have designed an abbreviated version of intron bI1, with a length of 542 nucleotides, which is still catalytically active. 相似文献
4.
The two steps of group II intron self-splicing are mechanistically distinguishable. 总被引:3,自引:2,他引:3
下载免费PDF全文

The two transesterification reactions catalyzed by self-splicing group II introns take place in either two active sites or two conformations of a single active site involving rearrangements of the positions of the reacting groups. We have investigated the effects on the rates of the chemical steps of the two reactions due to sulfur substitution of nonbridging oxygens at both the 5' and 3' splice sites as well as the deoxyribose substitution of the ribose 2' hydroxyl group at the 5' splice site. The data suggest that the two active sites differ in their interactions with several of these groups. Specifically, sulfur substitution of the pro-Sp nonbridging oxygen at the 5' splice site reduces the chemical rate of the step one branching reaction by at least 250-fold, whereas substitution of the pro-Sp oxygen at the 3' splice site has only a 4.5-fold effect on the chemical rate of step two. Previous work demonstrated that the Rp phosphorothioate substitutions at both the 5' and 3' splice sites reduced the rate of both steps of splicing to an undetectable level. These results suggest that either two distinct active sites catalyze the two steps or that more significant alterations must be made in a single bifunctional active site to accommodate the two different reactions. 相似文献
5.
A three-dimensional perspective on exon binding by a group II self-splicing intron 总被引:1,自引:0,他引:1
下载免费PDF全文

We have used chemical footprinting, kinetic dissection of reactions and comparative sequence analysis to show that in self-splicing introns belonging to subgroup IIB, the sites that bind the 5' and 3' exons are connected to one another by tertiary interactions. This unanticipated arrangement, which contrasts with the direct covalent linkage that prevails in the other major subdivision of group II (subgroup IIA), results in a unique three-dimensional architecture for the complex between the exons, their binding sites and intron domain V. A key feature of the modeled complex is the presence of several close contacts between domain V and one of the intron-exon pairings. These contacts, whose existence is supported by hydroxyl radical footprinting, provide a structural framework for the known role of domain V in catalysis and its recently demonstrated involvement in binding of the 5' exon. 相似文献
6.
Requirements for self-splicing of a group I intron from Physarum polycephalum. 总被引:1,自引:0,他引:1
下载免费PDF全文

The third intron from Physarum polycephalum (Pp LSU 3) is one of the closest known relatives to the well-studied Tetrahymena group I intron. Both introns are located at the same position in the 26S rRNA gene, and with the exception of an open reading frame in Pp LSU 3, are highly homologous. While Pp LSU 3 has been shown to self splice, little is known about its activity in vitro. We have examined the requirements for self splicing in greater detail. Despite its similarity to the Tetrahymena intron, Pp LSU 3 is 1500-fold less reactive, demonstrates a preference for high salt, and exhibits a low Km for GTP. Removal of the open reading frame results in a modest increase of activity. This system provides an opportunity to understand how sequence variations in two related introns alter the efficiency of autoexcision, and how this relates to adaptation of group I introns to their particular sequence context. 相似文献
7.
8.
S Couture A D Ellington A S Gerber J M Cherry J A Doudna R Green M Hanna U Pace J Rajagopal J W Szostak 《Journal of molecular biology》1990,215(3):345-358
We have constructed all single base substitutions in almost all of the highly conserved residues of the Tetrahymena self-splicing intron. Mutation of highly conserved residues almost invariably leads to loss of enzymatic activity. In many cases, activity could be regained by making additional mutations that restored predicted base-pairings; these second site suppressors in general confirm the secondary structure derived from phylogenetic data. At several positions, our suppression data can be most readily explained by assuming non-Watson-Crick base-pairings. In addition to the requirements imposed by the secondary structure, the sequence of the intron is constrained by "negative interactions", the exclusion of particular nucleotide sequences that would form undesirable secondary structures. A comparison of genetic and phylogenetic data suggests sites that may be involved in tertiary structural interactions. 相似文献
9.
The self-splicing intron ribozymes have been regarded as primitive forms of the splicing machinery for eukaryotic pre-mRNAs. The splicing activity of group I self-splicing introns is dependent on an absolutely conserved and exceptionally densely packed core region composed of two helical domains, P3-P7 and P4-P6, that are connected rigidly via base triples. Here we show that a mutant group I intron ribozyme lacking both the P4-P6 domain and the base triples can perform the phosphoester transfer reactions required for splicing at both the 5' and 3' splice sites, demonstrating that the elements required for splicing are concentrated in the stacked helical P3-P7 domain. This finding establishes that the conserved core of the intron consists of two physically and functionally separable components, and we present a model showing the architecture of a prototype of this class of intron and the course of its molecular evolution. 相似文献
10.
Restoration of the self-splicing activity of a defective group II intron by a small trans-acting RNA 总被引:5,自引:0,他引:5
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron. 相似文献
11.
Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation. 总被引:5,自引:3,他引:5
下载免费PDF全文

The fifth intron in the gene for cytochrome c oxidase subunit I in yeast mitochondrial DNA is of the group II type and is capable of self-splicing in vitro. The reaction results in lariat formation, concomitant with exon-exon ligation and does not require a guanosine nucleotide for its initiation. It is generally assumed, but not formally proven, that the first step in splicing is a nucleophilic attack of the 2'-hydroxyl of the branchpoint nucleotide (A) on the 5'-exon-intron junction. To investigate the role of intron sequences in recognition of the 5'-splice junction and the ensuing event of cleavage and lariat formation, mutations have been introduced at and around the branchsite. Results obtained show that although branchpoint attack and subsequent lariat formation are strongly preferred events under conditions normally used for self-splicing, addition of a single T residue at intron position 856, a mutation which brings the branchpoint adenosine into a basepair, leads to a conditionally active intron, which at high ionic strength catalyses exon-exon ligation in the absence of lariat formation. Comparable behaviour is also observed with the branchpoint A deletion mutant. The implications of these findings for the mechanism of self-splicing of group II introns are discussed. 相似文献
12.
Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron 总被引:5,自引:0,他引:5
We have completed a comprehensive deletion analysis of the Tetrahymena ribozyme in order to define the minimum secondary structure requirements for phosphoester transfer activity of a self-splicing group I intron. A total of 299 nucleotides were removed in a piecewise fashion, leaving a catalytic core of 114 nucleotides that form 7 base-paired structural elements. Among the various deletion mutants are a 300-nucleotide single-deletion mutant and a 281-nucleotide double-deletion mutant whose activity exceeds that of the wild type when tested under physiologic conditions. Consideration of those structural elements that are essential for catalytic activity leads to a simplified secondary structure model of the catalytic core of a group I intron. 相似文献
13.
14.
Differential chemical probing of a group II self-splicing intron identifies bases involved in tertiary interactions and supports an alternative secondary structure model of domain V. 总被引:4,自引:1,他引:4
下载免费PDF全文

Dimethyl sulfate modification was used to probe for tertiary structural elements in the group II intron PI.LSU/2 from the mitochondrial pre-ribosomal RNA of the brown alga Pylaiella littoralis. Modification of the lariat form of the intron under conditions that allow both native folding and conformational homogeneity is found to be generally consistent with secondary and tertiary structural features identified previously for group II ribozymes. A comparison of chemical probing at temperatures just below and above the first melting transition illustrates the cooperative unfolding of tertiary structure and identifies novel candidates for tertiary interactions in addition to defining elements of secondary structure. Substitution of the GAAA terminal loop of domain V is shown to be compatible with retention of conformational homogeneity (despite the loss of an important tertiary interaction), but produces a concise methylation footprint in domain I at the site previously shown to harbor the receptor for that loop. The analysis also identified two nucleotide positions in domain V with novel secondary and potential tertiary structural roles. The proposed refinement of domain V secondary structure is supported by an expanded comparative analysis of group II sequences and bears increased resemblance to U2:U6 snRNA pairing in the spliceosome. 相似文献
15.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro. 相似文献
16.
Group II introns are self-splicing RNA molecules that also behave as mobile genetic elements. The secondary structure of group II intron RNAs is typically described as a series of six domains that project from a central wheel. Most structural and mechanistic analyses of the intron have focused on domains 1 and 5, which contain the residues essential for catalysis, and on domain 6, which contains the branch-point adenosine. Domains 2 and 3 (D2, D3) have been shown to make important contributions to intronic activity; however, information about their function is quite limited. To elucidate the role of D2 and D3 in group II ribozyme catalysis, we built a series of multi-piece ribozyme constructs based on the ai5gamma group II intron. These constructs are designed to shed light on the roles of D2 and D3 in some of the major reactions catalyzed by the intron: 5'-exon cleavage, branching, and substrate hydrolysis. Reactions with these constructs demonstrate that D3 stimulates the chemical rate constant of group II intron reactions, and that it behaves as a form of catalytic effector. However, D3 is unable to associate independently with the ribozyme core. Docking of D3 is mediated by a short duplex that is found at the base of D2. In addition to recruiting D3 into the core, the D2 stem directs the folding of the adjacent j(2/3) linker, which is among the most conserved elements in the group II intron active site. In turn, the D2 stem contributes to 5'-splice site docking and ribozyme conformational change. Nucleotide analog interference mapping suggests an interaction between the D2 stem and D3 that builds on the known theta-theta' interaction and extends it into D3. These results establish that D3 and the base of D2 are key elements of the group II intron core and they suggest a hierarchy for active-site assembly. 相似文献
17.
18.
19.
Group II intron self-splicing. Alternative reaction conditions yield novel products 总被引:23,自引:0,他引:23
K A Jarrell C L Peebles R C Dietrich S L Romiti P S Perlman 《The Journal of biological chemistry》1988,263(7):3432-3439
Reaction parameters were modified to enhance the in vitro reaction rate and to reveal partial and novel reactions of the group II intron 5g of the mitochondrial gene from Saccharomyces cerevisiae encoding cytochrome c oxidase subunit I. One alteration yields separate 5'- and 3'-exons plus linear excised intron as the main products. A linear reaction intermediate, containing intron and 3'-exon, and products resulting from cleavages at two unexpected sites were identified. Spliced exon "reopening," a novel reaction between excised intron and spliced exons, appears responsible for separate 5'- and 3'-exon products. 相似文献
20.
Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro 总被引:10,自引:0,他引:10
Group II intron bI1, the first intron of the COB gene in the mitochondria of S. cerevisiae, is able to self-splice in vitro with the basic pathway similar to nuclear pre-mRNA splicing. We show that incubation of the intron lariat with ligated exons bE1 and bE2 leads to a complete reversal of the splicing reaction. The integration of the intron into the ligated exons is correct; the reconstituted preRNA of the reverse reaction can undergo a self-splicing reaction anew. When incubated with a foreign RNA species bearing a sequence motif that is complementary to exon binding site 1, the lariat can integrate into this RNA with the position of insertion immediately downstream of this sequence. This result implies that transposition of group II introns on the RNA level by reversal of the splicing reaction is, in principle, conceivable. 相似文献