首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.

The genome of the nitrogen-fixing soil bacterium Sinorhizobium meliloti does not possess genes for bioremediation of aromatic pollutants. It has the well-known ability to interact specifically with the leguminous alfalfa plant, Medicago sativa. Our previous work has shown enhanced degradation of the nitroaromatic compound 2,4-dinitrotoluene (DNT) when a plasmid containing degradative genes was introduced in it. In this study we report molecular evidence of the transfer of a polychlorinated biphenyl (PCB)-biodegradative plasmid pE43 to S. meliloti strain USDA 1936. Several standard analytical tests and plant growth chamber studies were conducted to test the ability of S. meliloti to degrade 2′,3,4-PCB congener. Alfalfa plant alone was able to degrade 30% of PCBs compared with control. No enhanced dechlorination was noted when alfalfa plant was grown with wild-type S. meliloti, and when alfalfa plant was grown with the S. meliloti electrotransformants (genetically modified) dechlorination of PCBs was more than twice that when alfalfa plant was grown with wild-type S. meliloti. When alfalfa plant was grown with uncharacterized mixed culture (containing nodule formers), almost equally significant PCB degradation was observed. The significance of this work is that the naturally occurring nitrogen-fixing soil bacterium S. meliloti (genetically modified) has the ability to enhance fertility of soil in association with the leguminous alfalfa plant while simultaneously enhancing bioremediation of PCB-contaminated soils. Enhanced bioremediation of PCB and robust alfalfa plant growth was also noted when uncharacterized mixed cultures containing alfalfa plant nodule formers were used.

  相似文献   

2.
A field experiment was conducted to study the effects of inoculation with the arbuscular mycorrhizal fungus Glomus caledonium and/or Rhizobium meliloti on phytoremediation of an agricultural soil contaminated with weathered PCBs by alfalfa grown for 180 days. Planting alfalfa (P), alfalfa inoculated with G. caledonium (P + AM), alfalfa inoculated with R. meliloti (P + R), and alfalfa co-inoculated with R. meliloti and G. caledonium (P+AM+R) decreased significantly initial soil PCB concentrations by 8.1, 12.0, 33.8, and 43.5%, respectively. Inoculation with R. meliloti and/or G. caledonium (P+AM+R) increased the yield of alfalfa, and the accumulation of PCBs in the shoots. Soil microbial counts and the carbon utilization ability of the soil microbial community increased when alfalfa was inoculated with R. meliloti and/or G. caledonium. Results of this field study suggest that synergistic interactions between AMF and Rhizobium may have great potential to enhance phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs.  相似文献   

3.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

4.
The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.  相似文献   

5.
The soil bacterium Sinorhizobium meliloti is capable of entering into a nitrogen-fixing symbiosis with Medicago sativa (alfalfa). Particular low-molecular-weight forms of certain polysaccharides produced by S. meliloti are crucial for establishing this symbiosis. Alfalfa nodule invasion by S. meliloti can be mediated by any one of three symbiotically important polysaccharides: succinoglycan, EPS II, or K antigen (also referred to as KPS). Using green fluorescent protein-labeled S. meliloti cells, we have shown that there are significant differences in the details and efficiencies of nodule invasion mediated by these polysaccharides. Succinoglycan is highly efficient in mediating both infection thread initiation and extension. However, EPS II is significantly less efficient than succinoglycan at mediating both invasion steps, and K antigen is significantly less efficient than succinoglycan at mediating infection thread extension. In the case of EPS II-mediated symbioses, the reduction in invasion efficiency results in stunted host plant growth relative to plants inoculated with succinoglycan or K-antigen-producing strains. Additionally, EPS II- and K-antigen-mediated infection threads are 8 to 10 times more likely to have aberrant morphologies than those mediated by succinoglycan. These data have important implications for understanding how S. meliloti polysaccharides are functioning in the plant-bacterium interaction, and models are discussed.  相似文献   

6.
7.
Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA- mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492-498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.  相似文献   

8.
9.
Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found.  相似文献   

10.
The development of nitrogen-fixing nodules of the Rhizobium-legume symbiosis, especially the early stages of root hair deformation and curling, infection thread formation, and nodule initiation, has been well studied from a genetic standpoint. In contrast, the factors important for the colonization of surfaces by rhizobia, including roots-an important prerequisite for nodule formation-have not been as thoroughly investigated. We developed conditions for analyzing the ability of two fast-growing rhizobia, Sinorhizobium meliloti and Rhizobium leguminosarum bv. viciae, to produce biofilms on abiotic surfaces such as glass, plastic microtiter plates, sand and soil as a prelude to characterizing the genes important for aggregation and attachment. Factors involved in adherence to abiotic surfaces are likely to be used in rhizobial attachment to legume root cells. In this report, we show that S. meliloti exopolysaccharide-deficient mutants as well as exopolysaccharide overproducers exhibit reduced biofilm phenotypes that show parallels with their nodulation abilities. We also investigated two flagella-less S. meliloti mutants and found them to have reduced biofilming capabilities. To investigate whether there was a symbiotic phenotype, we tested one of the Fla- mutants on two different S. meliloti hosts, alfalfa and white sweetclover, and found that nodule formation was significantly delayed on the latter.  相似文献   

11.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

12.
Aims:  Sinorhizobium meliloti is a nitrogen-fixing alpha-proteobacterium present in soil and symbiotically associated with root nodules of leguminous plants. To date, estimation of bacterial titres in soil is achieved by most-probable-number assays based on the number of nodules on the roots of test plants. Here, we report the development of two real-time PCR (qPCR) assays to detect the presence of S. meliloti in soil and plant tissues by targeting, in a species-specific fashion, the chromosomal gene rpo E1 and the pSymA gene nod C.
Methods and Results:  rpo E1 and nod C primer pairs were tested on DNA extracted from soil samples unspiked and spiked with known titres of S. meliloti and from plant root samples nodulated with S. meliloti . Results obtained were well in agreement with viable titres of S. meliloti cells estimated in the same samples.
Conclusions:  The developed qPCR assays appear to be enough sensitive, precise and species-specific to be used as a complementary tool for S. meliloti titre estimation.
Significance and Impact of the Study:  These two novel markers offer the possibility of quick and reliable estimation of S. meliloti titres in soil and plant roots contributing new tools to explore S. meliloti biology and ecology including viable but nonculturable fraction.  相似文献   

13.
The study of the effect of the periplasmic glucan isolated from the root-nodule bacterium S. meliloti CXM1-188 on the symbiosis of another strain (441) of the same root-nodule bacterium with alfalfa plants showed that this effect depends on the treatment procedure. The pretreatment of alfalfa seedlings with the glucan followed by their bacterization with S. meliloti 441 insignificantly influenced the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity) but induced a statistically significant increase in the efficiency of symbiosis (expressed as the masses of the alfalfa overground parts and roots). At the same time, the pretreatment of S. meliloti 441 cells with the glucan brought about a considerable decrease in the nodulation parameters of symbiosis (the number of the root nodules and their nitrogen-fixing activity decreased by 2.5-11 and 7 times, respectively). These data suggest that the stimulating effect of rhizobia on host plants may be due not only to symbiotrophic nitrogen fixation but also to other factors. Depending on the experimental conditions, the treatment of alfalfa plants with the glucan and their bacterization with rhizobial cells enhanced the activity of peroxidase in the alfalfa roots and leaves by 10-39 and 12-27%, respectively.  相似文献   

14.
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.  相似文献   

15.
During the symbiotic interaction between alfalfa and the nitrogen-fixing bacterium Rhizobium meliloti, the bacterium induces the formation of nodules on the plant roots and then invades these nodules. Among the bacterial genes required for nodule invasion are the exo genes, involved in production of an extracellular polysaccharide, and the ndv genes, needed for production of a periplasmic cyclic glucan. Mutations in the exoD gene result in altered exopolysaccharide production and in a nodule invasion defect. In this work we show that the stage of symbiotic arrest of exoD mutants is similar to that of other exo and ndv mutants. However, the effects of exoD mutations on exopolysaccharide production and growth on various media are different from the effects of other exo and ndv mutations. Finally, exoD mutations behave differently from other exo mutations in their ability to be suppressed or complemented extracellularly. The results suggest that exoD represents a new class of Rhizobium genes required for nodule invasion, distinct from the other exo genes and the ndv genes. We discuss models for the function of exoD.  相似文献   

16.
17.
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.  相似文献   

18.
19.
20.
A chromium (Cr)-resistant bacterium isolated from soil containing 6,000 mg/kg of Cr was identified based on 16S rRNA gene sequence analysis as Delftia, and designated as JD2. Growth of JD2 was accompanied with reduction of Cr(VI) to Cr(III) in liquid medium initially containing 100 mg/L Cr(VI), the maximum concentration allowing growth. JD2 showed NADH/NADPH-dependent reductase activity associated with the soluble fraction of cells. The results suggest that JD2 might be a good candidate for the treatment of highly Cr(VI)-contaminated water and/or industrial effluents. The isolate produced indole-3-acetic acid in the presence and absence of Cr(VI) and showed free-living nitrogen-fixing activity possibly attributable to a V-nitrogenase. JD2 did not counteract the harmful effect of Cr(VI) during leguminous plant growth and nodulation by rhizobial strains but functioned as a “helper” bacterium to enhance the performance of rhizobial inoculant strains during inoculation of alfalfa and clover (used as model plants to study plant growth-promoting activity) in the absence of Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号