首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetical characteristics of ATP hydrolysis by mitochondrial F1-ATPase from Saccharomyces cerevisiae (yeast) have been studied under conditions where only a single catalytic site per enzyme molecule bound ATP. Four major features were observed, that is, fast ATP binding to the enzyme, slow product release from the enzyme, an equilibrium close to unity between ATP and products on the enzyme, and promotion of ATP hydrolysis on the second addition of a large excess of ATP (cold chase). These are essentially the same as the kinetical characteristics observed for beef heart mitochondrial F1-ATPase, which were called as unisite catalysis by Grubmeyer et al. (Grubmeyer, C. et al. (1982) J. Biol. Chem. 257, 12092-12100), although the release of a hydrolysis product, Pi, from the yeast enzyme appeared to occur significantly faster than that from the beef enzyme, which resulted in a decreased extent of cold chase promotion of ATP hydrolysis of the yeast enzyme. The yeast F1-ATPase showed unisite catalysis even in the absence of Pi in the reaction mixtures, while it was reported for the beef F1-ATPase that the presence of Pi in the reaction mixture was essential for unisite catalysis (Penefsky, H.S. & Grubmeyer, C. (1984) in H+-ATPase (ATP Synthase) (Papa, S. et al., eds.) pp. 195-204, The ICSU Press). Another difference in the Pi effect on the kinetics was that ATP hydrolysis was initiated without a lag time in the absence of Pi in the case of the yeast enzyme when a 1,000-fold molar excess of ATP per enzyme molecular was mixed with the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The hydrolysis of 0.3 microM [alpha,gamma-32P]ATP by 1 microM F1-ATPase isolated from the plasma membranes of Escherichia coli has been examined in the presence and absence of inorganic phosphate. The rate of binding of substoichiometric substrate to the ATPase is attenuated by 2 mM phosphate and further attenuated by 50 mM phosphate. Under all conditions examined, only 10-20% of the [alpha,gamma-32P]ATP that bound to the enzyme was hydrolyzed sufficiently slowly to be examined in cold chase experiments with physiological concentrations of non-radioactive ATP. These features differ from those observed with the mitochondrial F1-ATPase. The amount of bound substrate in equilibrium with bound products observed in the slow phase which was subject to promoted hydrolysis by excess ATP was not affected by the presence of phosphate. Comparison of the fluxes of enzyme-bound species detected experimentally in the presence of 2 mM phosphate with those predicted by computer simulation of published rate constants determined for uni-site catalysis (Al-Shawi, M.D., Parsonage, D. and Senior, A.E. (1989) J. Biol. Chem. 264, 15376-15383) showed that hydrolysis of substoichiometric ATP observed experimentally was clearly biphasic. Less than 20% of the substoichiometric ATP added to the enzyme was hydrolyzed according to the published rate constants which were calculated from the slow phase of product release in the presence of 1 mM phosphate. The majority of the substoichiometric ATP added to the enzyme was hydrolyzed with product release that was too rapid to be detected by the methods employed in this study, indicating again that the F1-ATPase from E. coli and bovine heart mitochondria hydrolyze substoichiometric ATP differently.  相似文献   

3.
A Robinson  B Austen 《FEBS letters》1987,212(1):63-67
Under the conditions of ATP regeneration and molar excess of nucleotide-depleted F1-ATPase the enzyme catalyses steady-state ATP hydrolysis by the single catalytic site. Values of Km = 10(-8) M and Vm = 0.05 s-1 for the single-site catalysis have been determined. ADP release limits single-site ATP hydrolysis under steady-state conditions. The equilibrium constant for ATP hydrolysis at the F1-ATPase catalytic site is less than or equal to 0.7.  相似文献   

4.
Using manual rapid-mixing procedures in which small, equal volumes of Escherichia coli F1-ATPase and [gamma-32P]ATP were combined at final concentrations of 2 and 0.2 microM, respectively (i.e., unisite catalysis conditions), it was shown that greater than or equal to 66% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi equal to 0.4 and the rate of dissociation of bound [32P]Pi equal to 3.5 x 10(-3) s-1, similar to previously published values. Azide is known to inhibit cooperative but not unisite catalysis in F1-ATPase [Noumi, T., Maeda, M., & Futai, M. (1987) FEBS Lett. 213, 381-384]. In the presence of 1 mM sodium azide, 99% of the 32P became bound to the enzyme, with the ratio of bound ATP/bound Pi being 0.57. These experiments demonstrated that when conditions are used which minimize cooperative catalysis, most or all of the F1 molecules bind substoichiometric ATP tightly, hydrolyze it with retention of bound ATP and Pi, and release the products slowly. The data justify the validity of previously published rate constants for unisite catalysis. Unisite catalysis in E. coli F1-ATPase was studied at varied pH from 5.5 to 9.5 using buffers devoid of phosphate. Rate constants for ATP binding/release, ATP hydrolysis/resynthesis, Pi release, and ADP binding/release were measured; the Pi binding rate constant was inferred from the delta G for ATP hydrolysis. ATP binding was pH-independent; ATP release accelerated at higher pH. The highest KaATP (4.4 x 10(9) M-1) was seen at physiological pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Nucleotide-depleted mitochondrial F1-ATPase binds 3'-(2')-O-(2-nitro-4-azidobenzoyl)-derivatives of ATP (NAB-ATP) and GTP (NAB-GTP) when these nucleotide analogues are added to the enzyme in equimolar quantities in the presence of Mg2+ (uni-site catalysis conditions). The binding of NAB-ATP is accompanied by its hydrolysis and inorganic phosphate dissociation from the enzyme; NAB-ADP remains bound to F1-ATPase. The F1-ATPase X NAB-ADP complex has no ATPase activity and its reactivation in the presence of an excess of ATP is accompanied by NAB-ADP release. The illumination of the F1-ATPase complexes with NAB-ADP or NAB-GDP leads to the covalent binding of one nucleotide analogue molecule to the enzyme and to the irreversible inactivation of F1-ATPase. It follows from the results obtained that the modification of just one of the F1-ATPase catalytic sites is sufficient to complete the inhibition of ATPase activity.  相似文献   

6.
Incubation of [gamma-32P]ATP with a molar excess of the soluble, homogeneous ATPase from beef heart mitochondria (F1) results in binding of substrate primarily in a single, very high affinity (KA = 10(12) M-1) catalytic site and in a slow rate of hydrolysis characteristic of single site catalysis. Subsequent addition of millimolar concentrations of nonradioactive ATP as a cold chase, sufficient to fill catalytic sites on the enzyme, results in an acceleration of hydrolysis of bound radioactive ATP of as much as 10(6)-fold, that is, to Vmax rates (Cross, R.L., Grubmeyer, C., and Penefsky, H.S. (1982) J. Biol. Chem. 257, 12101-12105). For this reason, it was proposed that the high affinity catalytic site is a normal catalytic site on the molecule. Recently, Bullough et al. (Bullough, D.A., Verburg, J.G., Yoshida, M., and Allison, W.A. (1987) J. Biol. Chem. 262, 11675-11683) reported that when 5 to 20 microM concentrations of nonradioactive ATP were added as a cold chase to an enzyme-substrate complex consisting of F1 and ATP bound to the high affinity catalytic site, hydrolysis of the chase was commensurate with the turnover rate of the enzyme, whereas the hydrolysis of bound ATP was considerably slower. These authors suggested that the high affinity catalytic site on F1 is not a normal catalytic site. This paper shows, in experiments with a rapid mixing-chemical quench apparatus, that hydrolysis of ATP bound in the high affinity catalytic site is accelerated to Vmax rates following addition of 5 microM ATP as a cold chase. Hydrolysis of bound ATP appears to precede that of the chase. The weight of the available evidence continues to support the original suggestion that the high affinity catalytic site of beef heart F1 is a normal catalytic site.  相似文献   

7.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

8.
H Hanada  T Noumi  M Maeda  M Futai 《FEBS letters》1989,257(2):465-467
We prepared two types of E. coli F1 by slightly different gel filtration procedures of the purified F1: F1(II) contained about 2 mol, and F1(V) about 5 mol of bound adenine nucleotides per mol of the enzyme. Thus F1(II) had more than 2, possibly 3, vacant catalytic sites, while F1(V) had less than one vacant catalytic site. The rate of ATP hydrolysis in uni-site catalysis (in the presence of inorganic phosphate) was about 3-fold higher with F1(II) than with F1(V), suggesting that ADP and inorganic phosphate bound at the catalytic sites of F1(V) changed the kinetics of uni-site catalysis significantly.  相似文献   

9.
V N Kasho  M Yoshida  P D Boyer 《Biochemistry》1989,28(17):6949-6954
The ATPase from the ATP synthase of the thermophilic bacterium PS3 (TF1), unlike F1 ATPase from other sources, does not retain bound ATP, ADP, and Pi at a catalytic site under conditions for single-site catalysis [Yohda, M., & Yoshida, M. (1987) J. Biochem. 102, 875-883]. This raised a question as to whether catalysis by TF1 involved alternating participation of catalytic sites. The possibility remained, however, that there might be transient but catalytically significant retention of bound reactants at catalytic sites when the medium ATP concentration was relatively low. To test for this, the extent of water oxygen incorporation into Pi formed by ATP hydrolysis was measured at various ATP concentrations. During ATP hydrolysis at both 45 and 60 degrees C, the extent of water oxygen incorporation into the Pi formed increased markedly as the ATP concentration was lowered to the micromolar range, with greater modulation observed at 60 degrees C. Most of the product Pi formed arose by a single catalytic pathway, but measurable amounts of Pi were formed by a pathway with high oxygen exchange. This may result from the presence of some poorly active enzyme. The results are consistent with sequential participation of three catalytic sites on the TF1 as predicted by the binding change mechanism.  相似文献   

10.
A mutant strain KF43 of Escherichia coli defective in the beta subunit of H+-translocating ATPase (F0F1) was examined. In this mutant, replacement of Arg246 by His was identified by DNA sequencing of the mutant gene and confirmed by tryptic peptide mapping. The mutant F1-ATPase was defective in multi-site hydrolysis of ATP but was active in uni-site hydrolysis. Studies on the kinetics of uni-site hydrolysis indicated that the k1 (rate of ATP binding) was similar to that of the wild-type, but the k-1 (rate of release of ATP) could not be measured. The mutant enzyme had a k3 (rate of release of inorganic phosphate) about 15-fold higher than that of the wild-type and showed 3 orders of magnitude lower promotion from uni- to multi-site catalysis. These results suggest that Arg246 or the region in its vicinity is important in multi-site hydrolysis of ATP and is also related to the binding of inorganic phosphate. Reconstitution experiments using isolated subunits suggested that hybrid enzymes (alpha beta gamma complexes) carrying both the mutant and wild-type beta subunits were inactive in multi-site hydrolysis of ATP, supporting the notion that three intact beta subunits are required for activity of the F1 molecule.  相似文献   

11.
The reaction of mitochondrial F1-ATPase with immobilized substrate was studied by using columns of agarose-hexane-ATP. Mg2+ was required for binding of the enzyme to the column matrix. The column-bound enzyme could be eluted fully by ATP and other nucleoside triphosphates. Nucleoside di- and mono-phosphates were less effective. At a fixed concentration of nucleotide the effectiveness of elution was proportional to the charge on the eluting molecule. The ATP of the column matrix was hydrolysed by the bound F1-ATPase to release phosphate, probably by a uni-site reaction mechanism. Thus the F1-ATPase was bound to the immobilized ATP by a catalytic site. Treatment of the bound F1-ATPase with 4-chloro-7-nitrobenzofurazan prevented complete release of the enzyme by ATP. Only one-third of the bound enzyme was now eluted by the nucleotide. The inhibition of release could be due either to the inhibitor blocking co-operative interactions between sites or to its increasing the tightness of binding of immobilized ADP at the catalytic site.  相似文献   

12.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

13.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Interaction of mitochondrial F1-ATPase with the isolated natural inhibitor protein resulting in the inhibition of multi-site ATP hydrolysis is accompanied by the loss of activity at low ATP concentrations when single-site hydrolysis should occur. Catalytic site occupancy by [14C]nucleotides in F1-ATPase during steady-state [14C]ATP hydrolysis, which is saturated in parallel with single-site catalysis, is prevented after blocking the enzyme with the inhibitor protein.  相似文献   

15.
After isolation and purification, the H+-ATPase from chloroplasts, CF0F1, contains one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-32P]ADP leads to tight binding of azidonucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and upon UV-irradiation most of the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-32P]ADP, the covalently bound label was found exclusively at beta-Tyr-362. Incubation conditions with 2-azido-[alpha-32P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, designated as 1, 2 and 3 in order of decreasing affinity for ADP, and either catalytic site 1 or catalytic sites 1 and 2 together were labelled. For measurements of the degree of inhibition by covalent modification, CF0F1 was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K+/valinomycin diffusion potential. The rate of ATP synthesis was 50-80 s(-1), and the rate of ATP hydrolysis was 15 s(-1) measured under multi-site conditions. Covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together inhibited ATP synthesis and ATP hydrolysis equally, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that derivatisation of catalytic site 1 leads to complete inhibition when 1 mol 2-nitreno-ADP is bound per mol CF0F1. Derivatisation of catalytic sites 1 and 2 together extrapolates to complete inhibition when 2 mol 2-nitreno-ADP are bound per CF0F1. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with derivatised CF0F1 and with non-derivatised CF0F1. ATP synthesis and ATP hydrolysis under uni-site and under multi-site condition were inhibited by covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together. The results indicate that derivatisation of site 1 inhibits activation of the enzyme and that cooperative interactions occur at least between the catalytic sites 2 and 3.  相似文献   

16.
Yakov M. Milgrom 《BBA》2010,1797(10):1768-1774
The effect of inorganic phosphate (Pi) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F1-ATPase from beef heart mitochondria (ndMF1) has been investigated. It is shown for the first time that Pi decreases the apparent rate constant of uni-site ATP binding by ndMF1 3-fold with the Kd of 0.38 ± 0.14 mM. During uni-site ATP hydrolysis, Pi also shifts equilibrium between bound ATP and ADP + Pi in the direction of ATP synthesis with the Kd of 0.17 ± 0.03 mM. However, 10 mM Pi does not significantly affect ATP binding during multi-site catalysis.  相似文献   

17.
Incubation of the isolated H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ATP leads to the binding of this nucleotide to different sites. These sites were identified after removal of free nucleotides, UV-irradiation and trypsin treatment by separation of the tryptic peptides by ion exchange chromatography. The nitreno-AMP, nitreno-ADP and nitreno-ATP peptides were further separated on a reversed phase column, the main fractions were subjected to amino acid sequence analysis and the derivatized tyrosines were used to distinguish between catalytic (beta-Tyr362) and non-catalytic (beta-Tyr385) sites. Several incubation procedures were developed which allow a selective occupation of each of the three non-catalytic sites. The non-catalytic site with the highest dissociation constant (site 6) becomes half maximally filled at 50 microM 2-azido-[alpha-(32)P]ATP, that with the intermediate dissociation constant (site 5) at 2 microM. The ATP at the site with the lowest dissociation constant had to be hydrolyzed first to ADP before a replacement by 2-azido-[alpha-(32)P]ATP was possible. CF(0)F(1) with non-covalently bound 2-azido-[alpha-(32)P]ATP and after covalent derivatization was reconstituted into liposomes and the rates of ATP synthesis as well as ATP hydrolysis were measured after energization of the proteoliposomes by Delta pH/Delta phi. Non-covalent binding of 2-azido-ATP to any of the three non-catalytic sites does not influence ATP synthesis and ATP hydrolysis, whereas covalent derivatization of any of the three sites inhibits both, the degree being proportional to the degree of derivatization. Extrapolation to complete inhibition indicates that derivatization of one site (either 4 or 5 or 6) is sufficient to block completely multi-site catalysis. The rates of ATP synthesis and ATP hydrolysis were measured as a function of the ADP and ATP concentration from uni-site to multi-site conditions with covalently derivatized and non-derivatized CF(0)F(1). Uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent derivatization of any of the non-catalytic sites, whereas multi-site catalysis is inhibited. These results indicate that multi-site catalysis requires some flexibility between beta- and alpha-subunits which is abolished by covalent derivatization of beta-Tyr385 with a 2-nitreno-adenine nucleotide. Conformational changes connected with energy transduction between the F(0)-part and the F(1)-part are either not required for uni-site ATP synthesis or they are not impaired by the derivatization of any of the three beta-Tyr385.  相似文献   

18.
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.  相似文献   

19.
Under conditions of molar excess of enzyme, isolated F1-ATPase from beef heart mitochondria catalyses ATP hydrolysis biphasically. The rate constants for product release are approximately 10(-1) and 10(-4)-10(-3) s-1, respectively. The slow phase of ATP hydrolysis is insensitive to EDTA. [gamma-32P]ATP splitting in the slow phase cannot be chased from the enzyme during several catalytic turnovers. It follows from these results that the slow single-site hydrolysis of ATP (kcat approximately 10(-4) s-1), initially observed by Grubmeyer et al. [(1982) J. Biol. Chem. 257, 12092-12100], is not carried out by the normal catalytic site. In contrast, the phase of rapid ATP hydrolysis (kcat approximately 10(-1) s-1) is completely prevented by EDTA and is believed to be the normal function of the normal catalytic site of F1-ATPase.  相似文献   

20.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号