首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research was conducted to estimate impact of the multiple bioaugmentation on the treatment of soil contaminated by fuels - diesel oil and aircraft fuel. The bacteria used to inoculate the remediation plots were isolated from the polluted soil and proliferated in field conditions. The amount of biomass applied to the polluted soil was set to ensure the total number of bacteria in soil 107-108 cfu/g d.w. The multiple inoculation of soil with indigenous bacteria active in diesel oil and engine oil (plot A) degradation increased bioremediation effectiveness by 50% in comparison to the non-inoculated control soil and by 30% in comparison to the soil that was inoculated only once. The multiple inoculation of soil with indigenous microorganisms was then applied in bioremediation of the soil polluted with double high concentration of diesel oil (soil B) and in bioremediation of the soil polluted with aircraft fuel (soil C). The process efficiency was 80% and 98% removal of TPH for soil B and C, respectively.  相似文献   

2.
A study was undertaken to investigate the distribution of biosurfactant producing and crude oil degrading bacteria in the oil contaminated environment. This research revealed that hydrocarbon contaminated sites are the potent sources for oil degraders. Among 32 oil degrading bacteria isolated from ten different oil contaminated sites of gasoline and diesel fuel stations, 80% exhibited biosurfactant production. The quantity and emulsification activity of the biosurfactants varied. Pseudomonas sp. DS10‐129 produced a maximum of 7.5 ± 0.4 g/l of biosurfactant with a corresponding reduction in surface tension from 68 mN/m to 29.4 ± 0.7 mN/m at 84 h incubation. The isolates Micrococcus sp. GS2‐22, Bacillus sp. DS6‐86, Corynebacterium sp. GS5‐66, Flavobacterium sp. DS5‐73, Pseudomonas sp. DS10‐129, Pseudomonas sp. DS9‐119 and Acinetobacter sp. DS5‐74 emulsified xylene, benzene, n‐hexane, Bombay High crude oil, kerosene, gasoline, diesel fuel and olive oil. The first five of the above isolates had the highest emulsification activity and crude oil degradation ability and were selected for the preparation of a mixed bacterial consortium, which was also an efficient biosurfactant producing oil emulsifying and degrading culture. During this study, biosurfactant production and emulsification activity were detected in Moraxella sp., Flavobacterium sp. and in a mixed bacterial consortium, which have not been reported before.  相似文献   

3.
The potential of using indigenous microorganisms in beach sediments to degrade petroleum hydrocarbons emanating from marine oil spillages in the Straits of Singapore was investigated. A field trial was conducted using oil contaminated beach sediments from Pulau Semakau – a small island 15 km south of Singapore. The results clearly show that the addition of inorganic nutrients to beach sediments significantly enhanced the activity of indigenous microorganisms (measured using the dehydrogenase enzyme assay and viable cell count techniques), as well as the removal of total recoverable petroleum hydrocarbons (TRPH) over a 50-day study period (with up to 44% in the case of nutrient addition). The potential of exploiting in-situ bioremediation techniques for oil spill clean-up operations in tropical marine environments is discussed.  相似文献   

4.
In an attempt to evaluate the potential of petroleum bioremediation at high latitudes environments, microcosm studies using Antarctic coastal seawater contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49°22′S, 70°12′E). Microcosms were incubated at three different temperatures (4, 10 and 20°C). During experiments, changes observed in microbial assemblages (total direct count, heterotrophic cultivable microorganisms and hydrocarbon-degrading microorganisms) were generally similar for all incubation temperatures, but chemical data showed only some slight changes in biodegradation indices [Σ(C12–C20)/Σ(C21–C32) and C17/pristane]. The complete data set provided strong evidence of the presence of indigenous hydrocarbon-degrading bacteria in Antarctic seawater and their high potential for hydrocarbon bioremediation. The rate of oil degradation could be increased by the addition of a commercial fertilizer, but water temperature had little effects on biodegradation efficiency which is in conflict with the typical temperature-related assumption predicting 50% rate reduction when temperature is reduced by 10°C. Global warming of Antarctic seawater should not increase significantly the rate of oil biodegradation in these remote regions.  相似文献   

5.
The discovery that certain microorganisms, living within a marine environment, can actually degrade components of oil, has made possible the utilization of biological methods for the treatment of oil spills. A biosurfactant accelerates the process of degradation of pollutant composites. The objective of this work was to study the bioremediation in situ of a diesel oil spill by utilizing a biosurfactant produced through fermentation and then compare it with chemical remediation. The quantification and identification of hydrocarbons were carried out by the process of gas chromatography. The soil indigenous microorganisms were monitored. The experiment with biosurfactant reached reductions of 99% of the aliphatic hydrocarbons, while that of the chemical disperser experiment reached a maximum of 90% reduction in 180 days. In 15 days the biosurfactant removed 77% of the aliphatic hydrocarbons, the diesel oil experiment 8.7% and the chemical disperser only 5%. The biosurfactant was 99% effective for the removal of aromatic polycyclic hydrocarbons, up to 3 rings.  相似文献   

6.
Rhizoremediation involves the breakdown of contaminants in soil resulting from microbial activity that is enhanced in the plant root zone. The objective of this study was to identify Australian native grass species as suitable candidates for rhizoremediation application. Seeds of nine perennial Australian native grasses were sown in soil from a mine site and artificially contaminated with a 60:40 diesel/oil mixture at concentrations of 1% (w/w), 0.5% (w/w), and 0% (control). Seedling emergence was not adversely affected by the presence of hydrocarbon contamination for all but one grass species. Three promising species (Brachiaria decumbens, Cymbopogon ambiguus, and Microlaena stipoides var. Griffin) were assessed for growth characterization in contaminated and uncontaminated soils. The evaluated species survived for 120 days in the contaminated soil and, in some instances, produced considerably more root biomass in the presence of contamination. C. ambiguus showed growth stimulation in the presence of contamination (1% and 0.5% w/w) with significantly increased root biomass production compared with the control (p = 0.0001). B. decumbens and M. stipoides showed tolerance, without adverse growth effects in the presence of diesel/oil at the exposed concentrations. Stimulation of the rhizosphere microbial population that is capable of degrading diesel/oil was found for all of the species tested, using a most probable number method for enumeration. This investigation has identified suitable candidates for further investigation of their rhizoremediation potential.  相似文献   

7.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

8.
Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio‐electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio‐electrochemically active microorganisms in PCE‐contaminated groundwater. Lab‐scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS‐bioaugmentation (BS‐BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ‐Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS‐BA samples and up to 11.5 μA of current being generated. The indigenous non‐Dehalococcoides community was found to contribute significantly to electron transfer with ~61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non‐Dehalococcoides bacterial community in bio‐electrochemically reducing PCE that could prove to be a cost‐effective and sustainable bioremediation practice.  相似文献   

9.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

10.
Biodegradation of diesel oil (5 g(middot)kg [soil dry weight](sup-1)) was investigated in five alpine subsoils, differing in soil type and bedrock, in laboratory experiments during 20 days at 10(deg)C. The biodegradation activities of the indigenous soil microorganisms and of a psychrotrophic diesel oil-degrading inoculum and the effect of biostimulation by inorganic fertilization (C/N/P ratio = 100:10:2) were determined. Fertilization significantly enhanced diesel oil biodegradation activity of the indigenous soil microorganisms. Biostimulation by fertilization enhanced diesel oil biodegradation to a significantly greater degree than bioaugmentation with the psychrotrophic inoculum. In none of the five soils did fertilization plus inoculation result in a higher decontamination than fertilization alone. A total of 16 to 23% of the added diesel oil contamination was lost by abiotic processes. Total decontamination without and with fertilization was in the range of 16 to 31 and 27 to 53%, respectively.  相似文献   

11.
The imbalance of C, N, and P caused by the spilled oil could be regulated by the addition of nitrogen and phosphorous. Moreover, different kinds of N and P sources were used in order to stimulate oil biodegradation under laboratory and field conditions, but the results were conflicting. To evaluate the effectiveness of nutrient supplementation, N sources (NO3‐N and NH4‐N) and P sources (PO4‐P) were applied to the simulated diesel‐polluted seawater in the N/P ratio of 10:1 and 20:1, respectively. The results showed that the addition of nutrients increased the oil biodegradation rate and the counts of petroleum degrading bacteria (PDB) and heterotrophic bacteria (HB). A strongly positive correlation existed (the interrelated coefficient was nearly 0.9) between the percentage ratio of PDB/HB and the oil biodegradation rates, and therefore the percentage ratio of PDB/HB could be used as a good indicator to predict oil biodegradation. Among the four samples treated with nutrients, the biodegradation efficiency of the group amended with NO3‐N and PO4‐P in the ratio of 10:1 (10NO3‐P group) was as much as 75.8 %, while in the 10NH4‐P, 20NO3‐P and 20NH4‐P groups this value was 61.3 %, 52.4 % and 40.5, respectively. It would take natural degradation without nutrient supplementation about 78 days to achieve the result obtained within 14 days with 10NO3‐P amendment . Chemical and microbiological analyses confirmed that the addition of nutrients in the same N/P ratio remarkably enhanced the biodegradation rate and the counts of microorganisms in the NO3‐N treated groups, indicating that the microorganisms tend to utilize NO3‐N rather than NH4‐N as their growth N source. When the same kind of N source was added to the system, the promoted efficiency in the 10:1 (N/P ratio) groups was notable compared to the 20:1 groups, i.e., adding nutrients in the ratio of 10:1 is superior in the stimulation of oil biodegradation to the ratio of 20:1.  相似文献   

12.
Abstract

Our objective in this study was to compare the growth of zinnia, Italian ryegrass, and alfalfa, and their remediation effects in oil-contaminated soils. The soils were prepared by mixing 2, 4, or 8% diesel oil by weight with soil. The plant height and dry weights of shoots and roots were highest for zinnia in the 2 and 4% oil treatments, and highest for Italian ryegrass in the 8% oil treatment. The reduction ratios in soil total petroleum hydrocarbons concentration (TPH) for 3 plants were lower in the 4 and 8% oil treatments than those in the 2% treatment. The reduction ratios for Italian ryegrass and zinnia contaminated with 2, 4, and 8% diesel oil treatments were significantly higher than those for alfalfa and the non-cultivation treatment at 45?days after sowing, and there were no significant differences in reduction ratios between Italian ryegrass and zinnia. The reduction ratio of soil TPH concentration brought about by zinnia was also comparable to that of Italian ryegrass. Therefore, we conclude that zinnia shows growth and remediation effects that are equivalent to those of Italian ryegrass, in soils contaminated with less than 8% oil.  相似文献   

13.
Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram‐positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram‐negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6‐dichlorophenolindophenol (2,6‐DCPIP) while 16 had the gene alkane mono‐oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262–270, 2016  相似文献   

14.
Oil contamination is a worldwide concern now. However, oil contaminated environment is enriched with microorganisms that can utilize petroleum oil and use hydrocarbon for their growth, nutrition and metabolic activities. In the present study, bacteria present in the oil contaminated soil were isolated by enrichment culture technique using Minimal Salt (MS) media supplemented with diesel oil and burned engine oil as a sole carbon source. The isolated bacteria were characterized by morphological and biochemical tests and identified by molecular tool through cycle sequencing method. Three isolates were morphologically characterized as gram-negative, cocci shaped and 16S rRNA sequence analysis revealed that the isolates are closely related to Pseudomonas sp., Acinetobacter sp., and Enterobacter sp. respectively. Growth condition was optimized at pH 7.0 and temperature 37 °C. All the isolates were susceptible to several antibiotics and they have no antagonistic effect with soil beneficial bacteria. Three isolates were grown in two different concentrations of diesel oil and burned engine oil (4% v/v and 8%, v/v) respectively. Study revealed that with increasing the concentration of diesel oil in the media the growth rate of all the isolates were decreased. In contrast, the growth rates of all the three isolates were increased, with increasing concentration of burned engine oil. In our study, all the isolates showed their degradation efficacy in 4% v/v diesel oil and in 8% v/v burned engine oil. So, our research clearly shows that the isolates could be potentially used for bioremediation purposes for cleaning up petroleum polluted area.  相似文献   

15.
Summary Crude oil degradation was observed in water samples from three sites along the course of a polluted stream in Lagos, Nigeria. Consistent increase and decrease in the total viable counts (TVCs) of indigenous organisms occurred in the test and control experiments, respectively. Enrichments of the water samples with crude oil resulted in the isolation of nine bacteria belonging to seven genera. A mixed culture was developed from the assemblage of the nine species. The defined microbial consortium utilized a wide range of pure HCs including cycloalkane and aromatic HCs. Utilization of crude oil and petroleum cuts, i.e., kerosene and diesel resulted in an increase in TVC (till day 10) concomitant with decreases in pH and residual oil concentration. Crude oil, diesel and kerosene were degraded by 88, 85 and 78%, respectively, in 14 days. Substrate uptake studies with axenic cultures showed that growth was not sustainable on either cyclohexane or aromatics while degradation of the petroleum fractions fell below 67% in spite of extended incubation period (20 day). From the GC analysis of recovered oil, while reductions in peaks of n-alkane fractions and in biomarkers namely n-C17/pristane and n-C18/phytane ratios were observed in culture fluids of pure strains, complete removal of all the HC components of kerosene, diesel and crude oil including the isoprenoids was obtained with the consortium within 14 days.  相似文献   

16.
This study was carried out to investigate the kinetics of CO2 generation from the bioremediation of soil contaminated with spent motor oil (SCSMO) in an aerobic fixed-bed bioreactor designed and fabricated using indigenous technology. Six contaminated soil samples with different compositions at the same contaminant strength were investigated under a controlled air flow rate of 10 L/h. Results obtained revealed that treatment option “6” (i.e., the biostimulation option) gave the best result, with 75% reduction in the initial oil and grease content (O&G) and CO2 generation of 6,242 mg/kg contaminated soil (CS). Therefore, the biostimulation option was chosen as the treatment technology and kinetic investigation was based on the treatment technology. Results of kinetic investigation of the treatment technology showed that the growth rate can be represented by the popular Monod equation and the kinetic parameters are μmax = 1.115 × 10?16 h?1; K O&G = 37,490.9 mg/kg; yield of CO2 = 42.59%; and yield of biomass = 57.41%. The rate equation and kinetic parameters can be used to design a bioreactor and monitor biodegradation reaction during bioremediation process.  相似文献   

17.
A bacterial strain was isolated from soil that was contaminated with diesel oil and was used in our experiments. The strain was then phenotypically, biochemically and genetically tested and named as Achromobacter 4(2011). In order to examine the impact of long-term contact with diesel oil of bacterial cells, the strain was stored under different conditions – on standard nutrient agar plates and on agar plates with 50 μl diesel oil as a sole carbon and energy source. The results clearly indicated that longer contact with diesel oil led to changes in both the bacterial surface and biochemical properties, as well as the hexadecane monooxygenase activity. Moreover, the fatty acid profiles also changed, leading to an increased content of saturated fatty acids. In addition, the rates of biodegradation of diesel oil were higher even when supplemented with the surfactants – rhamnolipids and saponins. This work demonstrates that prolonged contact of microorganisms with diesel oil can lead to many changes, not only in biodegradation potential, but also in their surface and genetic properties.  相似文献   

18.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

19.
Bioremediation, a strategy mediated by microorganisms, is a promising way used in the degradation or removal of organic contaminants from soil or aquatic system. Exopolysaccharide (EPS) which was produced by a variety of Gram-negative bacteria has been demonstrated to be a potential bioemulsifier used in the degradation of hydrocarbons. In the present study, attempts were made to optimize the production of EPS from our newly isolates by adjusting the culture conditions and medium components. Besides, the performance of diesel oil emulsification using partially purified EPS derived from different conditions was also demonstrated. Out of 40 root nodulating bacteria the better emulsifying abilities were recorded from three strains namely Rhizobium miluonense CC-B-L1, Burkholderia seminalis CC-IDD2w and Ensifer adhaerens CC-GSB4, as can be seen from their emulsification index (E24) 66, 64 and 60%, respectively. These three strains produced 212, 203 and 198 mg l−1 of EPS, respectively, in yeast extract mannitol (YEM) medium. After modifying culture conditions, better performances can be achieved from these three strains, with increases of 21.7, 21.4, 16.7% in the EPS production and 12.1, 10.9, 8.3% in E24, respectively. When considered for strain CC-B-L1 and CC-IDD2w, the addition of 1.5% (v/v) of mannitol and 0.1% (v/v) of asparagine in YEM enhanced 42.9 and 34.7% in EPS production along with 28.8 and 37.5% higher in E24. The supplement of 2.0% (v/v) glucose and 0.2% (v/v) asparagine in YEM increased 65.2% of EPS and 38.3% of E24 in strain CC-GSB4. This is the first report demonstrating the optimization of diesel emulsification by EPS from root nodulating isolates, and these microbial agents might be used in the remediation of hydrocarbon contaminated soils in a near future.  相似文献   

20.
【目的】新疆油田六中区为典型水驱普通稠油油藏,水驱效果较差,油藏具有丰富的内源微生物,本研究通过分析内源微生物驱油对油藏微生物活动的影响,确定内源微生物驱油技术在该类油藏的应用潜力。【方法】采用高通量测序及分析化学技术,系统研究实施内源微生物驱油技术后油藏细菌群落结构组成、细菌总数和功能菌群的浓度以及采出液的流体性质,总结内源微生物驱油对油藏微生物活动的影响。【结果】现场试验注入激活剂和空气后,内源微生物被显著激活,细菌群落结构发生明显变化,细菌总数及功能菌群浓度普遍提高了2–3个数量级;各种内源微生物代谢活动显著增强,与地层流体相互作用后,原油明显被乳化,最终石油采收率提高5.2%。【结论】对于内源微生物较为丰富的水驱普通稠油油藏,内源微生物驱油技术对油藏微生物活动的影响显著,具有显著的技术优势和较大的应用潜力,微生物群落结构、功能菌群浓度及其相关代谢产物可以作为评价内源微生物驱油现场激活效果的重要指标,为其他内源微生物驱油现场试验提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号