首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A range of recombinant strains of Escherichia coli were developed to produce 1,3-propanediol (1,3-PDO), an important C3 diol, from glucose. Two modules, the glycerol-producing pathway converting dihydroxyacetone phosphate to glycerol and the 1,3-PDO-producing pathway converting glycerol to 1,3-PDO, were introduced into E. coli. In addition, to avoid oxidative assimilation of the produced glycerol, glycerol oxidative pathway was deleted. Furthermore, to enhance the carbon flow to the Embden- Meyerhof-Parnas pathway, the Entner-Doudoroff pathway was disrupted by deleting 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. Finally, the acetate production pathway was removed to minimize the production of acetate, a major and toxic by-product. Flask experiments were carried out to examine the performance of the developed recombinant E. coli. The best strain could produce 1,3-PDO with a yield of 0.47 mol/mol glucose. Along with 1,3-PDO, glycerol was produced with a yield of 0.33 mol/mol glucose.  相似文献   

2.

Background  

Extracellular expression of proteins has an absolute advantage in a large-scale industrial production. In our previous study, Thermobifida fusca cutinase, an enzyme mainly utilized in textile industry, was expressed via type II secretory system in Escherichia coli BL21(DE3), and it was found that parts of the expressed protein was accumulated in the periplasmic space. Due to the fact that alpha-hemolysin secretion system can export target proteins directly from cytoplasm across both cell membrane of E. coli to the culture medium, thus in the present study we investigated the expression of cutinase using this alpha-hemolysin secretion system.  相似文献   

3.

Objectives

To characterize a novel feruloyl esterase from Escherichia coli BL21 DE3.

Results

The gene encoding BioH was cloned and overexpressed in E. coli. The protein was purified and its catalytic activity was assessed. BioH exhibited feruloyl esterase activity toward a broad range of substrates, and the corresponding kinetic constants for the methyl ferulate, ethyl ferulate, and methyl p-coumarate substrates were: K m values of 0.48, 6.3, and 1.9 mM, respectively, and k cat /K m values of 9.3, 3.8, and 3.8 mM?1 s?1, respectively.

Conclusions

Feruloyl esterase from E. coli was expressed for the first time. BioH was confirmed to be a feruloyl esterase.
  相似文献   

4.
Bacterial allantoinase (ALLase; EC 3.5.2.5), which catalyzes the conversion of allantoin into allantoate, possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. Here, we characterized ALLase from Escherichia coli BL21. Purified recombinant ALLase exhibited no activity but could be activated when preincubating with some metal ions before analyzing its activity, and was in the order: Mn2+- ≫ Co2+- > Zn2+- > Ni2+- > Cd2+- ~Mg2+-activated enzyme; however, activity of ALLase (Mn2+-activated form) was also significantly inhibited with 5 mM Co2+, Zn2+, and Cd2+ ions. Activity of Mn2+-activated ALLase was increased by adding the reducing agent dithiothreitol (DTT), but was decreased by treating with the sulfhydryl modifying reagent N-ethylmaleimide (NEM). Inhibition of Mn2+-activated ALLase by chelator 8-hydroxy-5-quinolinesulfonic acid (8-HQSA), but not EDTA, was pH-dependent. Analysis of purified ALLase by gel filtration chromatography revealed a mixture of monomers, dimers, and tetramers. Substituting the putative metal binding residues His59, His61, Lys146, His186, His242, and Asp315 with Ala completely abolished the activity of ALLase, even preincubating with Mn2+ ions. On the basis of these results, as well as the pH-activity profile, the reaction mechanism of ALLase is discussed and compared with those of other cyclic amidohydrolases.  相似文献   

5.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

6.
A phytase with high activity at neutral pH and typical water temperatures (∼25°C) could effectively hydrolyze phytate in aquaculture. In this study, a phytase-producing strain, Pedobacter nyackensis MJ11 CGMCC 2503, was isolated from glacier soil, and the relevant gene, PhyP, was cloned using degenerate PCR and thermal asymmetric interlaced PCR. To our knowledge, this is the first report of detection of phytase activity and cloning of phytase gene from Pedobacter. PhyP belongs to beta-propeller phytase family and shares very low identity (∼28.5%) with Bacillus subtilis phytase. The purified recombinant enzyme (r-PhyP) from Escherichia coli displayed high specific activity for sodium phytate of 24.4 U mg−1. The optimum pH was 7.0, and the optimum temperature was 45°C. The K m, V max, and k cat values were 1.28 mM, 71.9 μmol min−1 mg−1, and 45.1 s−1, respectively. Compared with Bacillus phytases, r-PhyP had higher relative activity at 25°C (r-PhyP (>50%), B. subtilis phytase (<8%)) and hydrolyzed phytate from soybean with greater efficacy at neutral pH. These characteristics suggest that r-PhyP might be a good candidate for an aquatic feed additive in the aquaculture industry.  相似文献   

7.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

8.
Alkaline phosphatase gene of the bacterium, Bacillus licheniformis MTCC 1483 was cloned and successfully expressed in Escherichia coli BL21 (DE3). Sequence analysis revealed an open reading frame of 1662 bp encoding a 553 amino acid protein with a molecular mass of 62 kDa, as determined by SDS-PAGE. The recombinant enzyme was purified using Ni-NTA affinity column and the purified enzyme showed a specific activity of 24890 U/mg protein, which is the highest value among any other bacterial recombinant alkaline phosphatases reported so far. The enzyme exhibited optimum activity at 50°C and pH 10.0 and showed high thermostability. The recombinant alkaline phosphatase from B. licheniformis MTCC 1483 exhibited a dephosphorylation efficiency of 92.9% to dephosphorylate linear DNA fragments. The recombinant enzyme with high catalytic efficiency and thermostability has the potential for applications in clinical diagnostics which require enzyme stability against thermal deactivation during preparation or labeling procedures.  相似文献   

9.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

11.
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.  相似文献   

12.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

13.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

14.
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane.  相似文献   

15.
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens.  相似文献   

16.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology.  相似文献   

17.
Nucleotide and amino acid sequences of Corynebacterium glutamicum recA genes, from GenBank, were compared in silico. On the basis of the identity found between sequences, two degenerate primers were designed on the two sides of the deduced open reading frame (ORF) of the recA gene. PCR experiments, for amplifying the recA ORF region, were done. pGEM®-T Easy vector was selected to be used for cloning PCR products. Then recA ORF was placed under the control of Escherichia coli hybrid trc promoter, in pKK388-1 vector. pKK388-1 vector, containing recA ORF, was transformed to E. coli DH5α ΔrecA (recombinant deficient strain), in an attempt to phenotypically complement it. Ultraviolet (u.v.) exposure experiments of the transformed and non-transformed E. coli DH5α ΔrecA cells revealed tolerance of transformed cells up to dose 0.24 J/cm2, while non-transformed cells tolerated only up to dose 0.08 J/cm2. It is concluded that phenotypic complementation of E. coli DH5α ΔrecA with recA ORF of C. glutamicum, could be achieved and RecA activity could be restored.  相似文献   

18.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

19.

Background  

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii.  相似文献   

20.
The heparosan synthase of Escherichia coli K5 is composed of the glycosyltransferases KfiA and KfiC which synthesize the polysaccharide heparosan (N-acetylheparosan). A third protein, KfiB, is required to stabilize the KfiAC complex in the bacteria and to transport this complex to the inner membrane where the initiation of polymerization occurs. In this report, we fused KfiC with the E. coli trigger factor (TF) to stabilize KfiC, thus activating the enzyme in the absence of KfiB. Different recombinant plasmids were constructed to compare the impact of the presence or absence of KfiB and the presence of the trigger factor as a fusion protein. Several E. coli BL21-derived strains were transformed with recombinant plasmids and cultivated in fed-batch conditions on minimal medium. The bTCA strain overexpressing fused TF-KfiC together with KfiA and KfiD, but lacking KfiB produced 1.5 g/L of total heparosan after 24 h of fed-batch cultivation. This heparosan was essentially intracellular early in the culture, providing evidence that KfiB primarily plays a role in the exportation process. However, over time, heparosan became mostly extracellular, likely due to passive diffusion or partial cell disruption upon product accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号