首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system of planted and unplanted small‐scale subsurface flow (SSF) and surface flow (SF) constructed wetlands together with hydroponic systems (HP) were installed to compare the removal efficiencies of Fe and Zn from acid mine drainage (AMD) under long‐term field conditions. Maximum removal of 94–97 % (116–142 mg/m2 d) for Fe and 69–77 % (6.2–7.9 mg/m2 d) for Zn was calculated for the planted soil systems. The planted SSF was most sensitive to heavy rain fall. Short‐term increases of the metal concentration in the outflows, short‐term breakdowns of the Fe removal and continual long‐term breakdowns of the Zn removal were observed. In contrast to Zn removal, all wetland types are applicable for Fe removal with maximum removal in the range of 60–98 %. Most of the removed Fe and Zn was transformed and deposited inside the soil bed. The amount absorbed by the plants (0.03 to 0.3 %) and gravel‐associated soil beds (0.03 to 1.7 %) of the total input were low for both metals. The response of the planted SSF to rainfall suggests a remobilization of metals accumulated inside the rhizosphere and the importance of buffering effects of the surface water layers of SF systems. The importance of plants for metal removal was shown.  相似文献   

2.
Anoxic subsurface flow (SSF) constructed wetlands were evaluated for denitrification using nitrified wastewater. The treatment wetlands utilized a readily available organic woodchip-media packing to create the anoxic conditions. After 2 years in operation, nitrate removal was found to be best described by first-order kinetics. Removal rate constants at 20 °C (k20) were determined to be 1.41–1.30 d?1, with temperature coefficients (θ) of 1.10 and 1.17, for planted and unplanted experimental woodchip-media SSF wetlands, respectively. First-order removal rate constants decreased as length of operation increased; however, a longer-term study is needed to establish the steady-state values. The hydraulic conductivity in the planted woodchip-media SSF wetlands, 0.13–0.15 m/s, was similar to that measured in an unplanted gravel-media SSF control system.  相似文献   

3.
Knowledge regarding the dynamics of arsenic species and their interactions under gradient redox conditions in treatment wetlands is still insufficient. The aim of this investigation was to gain more information on the biotransformation of As and the dynamics of As species in horizontal subsurface‐flow constructed wetlands. Experiments were carried out in laboratory‐scale wetland systems, two planted with Juncus effusus and one unplanted, using an As‐containing artificial wastewater under defined organic C‐ and SO42–‐loading conditions. Immobilization of As was found in all systems under conditions of limited C, mainly due to adsorption and/or co‐precipitation. The removal efficiencies were substantially higher in the planted systems (60–70 %) as compared to the unplanted system (37 % on average). Immobilization under the conditions mentioned above appeared to decrease over time in all systems. At the beginning, the dosage of organic carbon immediately caused intensive microbial dissimilatory sulfate reduction in all systems (in the range of 85–95 %) and highly efficient removal of total arsenic (81–96 % on average). Later on, in this operation period, the intensity of sulfate reduction and simultaneous removal of As decreased, particularly in the planted wetlands (ranging from 30–46 %). One reason could be the re‐oxidation of reduced compounds due to oxygenation of the rhizosphere by the emergent wetland plants (helophytes). A significant amount of reduced As [As(III)] was found in the planted systems (> 75 % of total As) during the period of efficient microbial sulfate reduction, compared to the unplanted system (> 25 % of total As). The immobilization of arsenic was found to behave more stably in the planted beds than in the unplanted bed. Both systems (planted and unplanted) were suitable to treat wastewater containing As, particularly under sulfate reducing conditions. The unplanted system seemed to be more efficient regarding the immobilization of As, but the planted systems showed a better stability of immobilized As.  相似文献   

4.
Phenolic compounds in industrial wastewaters are toxic pollutants and pose a threat to public health and ecosystems. More recently, focus is being directed toward combining the treatment of these compounds with a cost‐effective and environmentally sound technology. The removal efficiency of dimethylphenol and ammonium nitrogen was studied, for the first time, in three different laboratory‐scale horizontal subsurface flow constructed wetlands planted with Juncus effusus. Two of the wetlands used were filled with gravel. One of these was planted and the second left without vegetation. The third wetland was a hydroponic system. It was found that the removal efficiencies of dimethylphenol was dependent on the inflow loading of the contaminant and was higher in the planted systems. Both planted systems yielded 99% removal efficiency up to loads of 240 mg/d, compared to only 73% for the unplanted constructed wetland. Factors and processes such as redox dynamics, methanogenesis, reduction of ammonium and low nitrate and nitrite concentrations imply simultaneous aerobic and anaerobic dimethylphenol transformations. A significant surplus of organic carbon was detected in the planted wetlands, which may originate from intermediates of the dimethylphenol transformation processes and/or organic plant root exudates. The present study demonstrates that horizontal subsurface flow constructed wetlands are a promising alternative system for the treatment of effluents contaminated with dimethylphenol isomers.  相似文献   

5.
The aim of this study was to investigate the removal of ibuprofen in laboratory scale constructed wetlands. Four (planted and unplanted) laboratory‐scale horizontal subsurface flow constructed wetlands were supplemented with ibuprofen in order to elucidate (i) the role of plants on ibuprofen removal and (ii) to evaluate the removal performance of a bioaugmented lab scale wetland. The planted systems showed higher ibuprofen removal efficiency than an unplanted one. The system planted with Juncus effusus was found to have a higher removal rate than the system planted with Phalaris arundinacea. The highest removal rate of ibuprofen was found after inoculation of gravel previously loaded with a newly isolated ibuprofen‐degrading bacterium identified as Sphingobium yanoikuyae. This experiment showed that more than 80 days of CW community adaptation for ibuprofen treatment could be superseded by bioaugmentation with this bacterial isolate.  相似文献   

6.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

7.
Removal of pharmaceutical compounds in tropical constructed wetlands   总被引:2,自引:0,他引:2  
The ability of tropical horizontal subsurface constructed wetlands (HSSF CWs) planted with Typha angustifolia to remove four widely used pharmaceutical compounds (carbamazepine, declofenac, ibuprofen and naproxen) at the relatively short hydraulic residence time of 2-4 days was documented. For both ibuprofen and naproxen, pharmaceutical compounds with low Dow values, the planted beds showed significant (p < 0.05) enhancement of removal efficiencies (80% and 91%, respectively, at the 4 day HRT), compared to unplanted beds (60% and 52%, respectively). The presence of plants resulted in the removal of these pharmaceutical compounds from artificial wastewater. The more oxidizing environment in the rhizosphere might have played an important role, but other rhizosphere effects, beside rhizosphere aeration, appeared to be important also. Carbamazepine, considered one of the most recalcitrant pharmaceuticals, and declofenac showed low removal efficiencies in our CW, and this is attributable to their higher hydrophobicity. The fact that the removal of these compounds could be explained by the sorption onto the available organic surfaces, explains why there was no significant difference (p > 0.05) in their removal efficiencies between planted as compared to unplanted beds. No statistical significant differences (p > 0.05) were observed for the removal efficiencies of any of the pharmaceuticals tested for the 2-day HRT as compared to that corresponding to 4-day HRT. The rather efficient removal shown by the wetlands in this study (with HRTs of 2-4 days), indicates that such a CW system may be more practically used (with less land requirements) in tropical regions for removing conventional pollutants and certain pharmaceutical compounds from wastewater effluents.  相似文献   

8.
Subsurface horizontal flow constructed wetlands are being evaluated for nitrogen (N) and phosphorus (P) removal from wastewater in this study through different gravel sizes, plant densities (Iris pseudacorus), effects of retention times (1 to 10 days) on N and P removal in continuously fed gravel wetland. The inlet and outlet samples were analyzed for TKN, NH4-N, and NO3-N, as standard methods. The planted wetland reactor with fine (SG) and coarse (BG) gravels removed 49.4% and 31.4% TKN, respectively, while unplanted reactors removed 43.4% and 26.8% TKN. Also, the efficiencies for NH4-N were 36.7–43% and 21.6–25.4% for SG and BG planted reactors, respectively. The efficiencies for NO3-N were 53.5–62.5% and 21.6–25.4% for SG and BG planted reactors, respectively. Roles of plants in SG reactors for O-PO4 were 5–12% and 3–8% in BG. Also, the roles of plants in the reactors for TP were 9% and 7.4%. The minimum effective detention time for the removal of NO3-N was 4–5 days. The subsurface constructed wetlands planted with I. pseudacorus can be an appropriate alternative in wastewater treatment natural system in small communities.  相似文献   

9.
煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果   总被引:41,自引:3,他引:38  
垂直流人工湿地系统不但具有较高的水力负荷率(54—64cm.^-1),而且对有机物和N、P都具有较高的去除效果.其对化粪池出水中的COD、BOD5、NIA4^+-N和总P的去除率分别为76%--87%,88%--92%,75%--85%和77%--91%.处理出水中COD、BOD5、NH4^+-N和总P的平均浓度分别小于60、20、25和2.0mg.L^-1.植物种植试验结果表明,种植风车草可提高氨氮、总N和总P的去除率,分别为2%--3%、4%--6%、10%--14%.  相似文献   

10.
Abstract

Treatment of landfill leachate is a challenge due to its complex chemical composition and high recalcitrance and because of high costs for conventional wastewater treatment. In our study, leachate from the Quitaúna Landfill, Sao Paulo Metropolitan Region, Brazil, was treated at a laboratory scale with a horizontal subsurface flow constructed treatment wetland (HF-CTW) operating under a recirculation regime. Two units planted with Heliconia psittacorum (HP) and Cyperus papyrus (CP), and one unplanted control unit were assessed. With a recirculation regime over 21?days, the planted units removed 40% of chemical oxygen demand (COD) while the control unit removed only 29%. True color removal efficiencies were 2, 22, and 23% for the control, HP, and CP HF-CTWs, respectively. The ammonium nitrogen removal efficiencies for a 21-day hydraulic retention time (HRT) were 63–81% for planted units and 72% for the control. The increase of the HRT from 7 to 21?days led to the enhancement of ammonium nitrogen removal but did not affect the COD and total nitrogen removals. This phenomenon is a consequence of leachate’s low biodegradability. The present study shows the importance of the HRT and plant presence for landfill leachate treatment using HF-CTWs.  相似文献   

11.
This study set up two flow-through pilot-scale constructed wetlands with the same size but various flow patterns (free water surface flow (FWS) and subsurface flow (SSF)) to receive a nitrate-contaminated groundwater. The effects of hydraulic loading rate (HLR) on nitrate removal as well as the difference in performance between the various types of wetlands were investigated. Nitrate removal rates of both wetlands increased with increasing HLR until a maximum value was reached. The maximum removal rates, occurred at HLR of 0.12 and 0.07 m d(-1), were 0.910 and 1.161 g N m(-2)d(-1) for the FWS and SSF wetland, respectively. After the maximum values were reached, further increasing HLR led to a considerable decrease in nitrate removal rate. Nitrate removal efficiencies remained high (>85%) and effluent nitrate concentrations always satisfied drinking water standard (<10mg NO3-NL(-1)) when HLR did not exceed 0.04 m d(-1) for both FWS and SSF wetlands. The first-order nitrate removal rate constant tends to decrease with increasing HLRs. The FWS wetland provided significantly higher (p<0.05) organic carbon in effluent than the SSF wetland, while the SSF wetland exhibited significantly (p<0.05) lower effluent DO than the FWS wetland. However, there was no significant difference (p>0.05) in nitrate removal performance between the two types of constructed wetlands in this study except in one trial operating at HLR of 0.06-0.07 m d(-1).  相似文献   

12.
Constructed wetlands and algae-based systems have been compared regarding their efficiencies on faecal bacteria removal. Two types of constructed wetlands, sub-surface (SSF) and free water surface (FWS) flow systems, and two more types of algae-based systems, high rate algae ponds (HRAP) and maturation pond (MP) have been studied for two years. All systems treated the same wastewater from a rural locality in León (northwest of Spain). Hydraulic retention time was 3 days for both wetland systems, 20 days for the maturation pond and 10 days for the high rate algae pond. Total coliforms, faecal coliforms, faecal Streptococci, Clostridium perfringens, and Staphylococci were analyzed in the influent and effluents of each system. A comparison among the wetland systems showed that SSF were more efficient than FWS system when considering surface removal rates (cfu removed/m2/d). Nevertheless, differences were not statistically significant. Considering mean removal efficiencies (in log unit), results showed that higher reductions were observed in FWS for most of the groups except for clostridia and Staphylococci. Concerning algae-based systems, MP showed higher removal efficiencies than HRAP, getting higher surface removal rates in the HRAP. Generally constructed wetlands were more efficient than algae-based systems when considering both, efficiencies in % and surface removal rates.  相似文献   

13.
Pilot-scale constructed wetlands (CW) were constructed and operated to treat pre-treated olive mill wastewater. Pilot-scale units comprising three identical series with four pilot-scale vertical flow CWs were operated for one harvest season in a Greek olive mill plant. The pilot-scale CWs were filled with various porous media (i.e., cobble, gravel, and sand) of different gradations. Two series of pilot-scale units were planted with common reeds and the third (control) was unplanted. Mean influent concentrations were 14,120 mg/L, 2841 mg/L, 95 mg/L, 123 mg/L and 506 mg/L for COD, phenols, ortho-phosphate, ammonia and TKN, respectively. Despite the rather high influent concentrations, the performance of the CW units was very effective since it achieved removals of about 70%, 70%, 75% and 87% for COD, phenols, TKN and ortho-phosphate, respectively. COD, phenol and TKN removal seems to be significantly higher in the planted series, while ortho-phosphate removal shows no significant differences among the three series. Temperature and pollutant surface load seem to affect the removal efficiency of all pollutants. Compared to previous studies, pollutant surface loads applied here were higher (by one or two orders of magnitude). Even though high removal efficiencies were achieved, effluent pollutant concentrations remained high, thus preventing their use for irrigation or immediate disposal into the environment.  相似文献   

14.
Microbial processes within the rhizosphere of constructed wetlands are crucial to wastewater treatment, but the relation between microbial community diversity in rhizosphere, plant growth and water quality are unclear at present. The effects of plant growth, water C:N:P ratio and their interaction on microbial diversity in the rhizosphere were studied in synthetic wastewater in planted and unplanted wetlands during three different seasons. The physiological profile of microbial community-level in each wetland was assessed using substrate utilization patterns gathered via BIOLOG? ECO plates. Plant had a significant effect on AWCD parameter, since the planted wetlands usually had a higher the total microbial activity than the unplanted over the study period. The Shannon, Simpson and McIntosh indices in the planted wetlands were apparently higher than those in the unplanted wetlands under any C:N:P ratio influent condition especially in summer. It was also shown that the unplanted wetlands have a greater shift of the interstitial microbial community than the planted at different seasons, since plant rhizospheres produce a more ecologically stable system in order to resist against shifts in microbial community composition in response to C:N:P ratio change in wastewater. Principal component analysis and clustering analysis indicated that influent C:N:P ratio would induce similar microbial species in the planted wetlands and detach them from the unplanted wetlands.  相似文献   

15.
With the rapid development of scaled anaerobic digestion of pig manure, the generation of liquid anaerobic digestate exceeds the farmland loading capacity, causing serious environmental pollution. Three laboratory‐scale horizontal subsurface flow constructed wetlands (CWs; planted + aeration, planted, and unplanted) were set up to investigate the feasibility of liquid digestate treatment in wetlands. Treatment capacity in different wetlands was evaluated under different influent concentrations (chemical oxygen demand [COD], 5 days biochemical oxygen demand [BOD5], and nitrogen forms). The effect of aeration and effluent recirculation on organic matter and total nitrogen removal was investigated. Results showed that integrating intermittent aeration in CWs significantly improved the oxygen condition (p < 0.01) in the wetland bed and promoted BOD5 removal to 90% in aerated CWs as compared with <15% in the unaerated CWs. Meanwhile, COD removal between these three wetlands did not show any difference and varied from 52 to 72% under influent concentration of 200–820 mg/L because of the high content of hard‐degradable organic matter in the liquid digestate. Intermittent aeration resulted in high ammonium removal (>98%) although the influent loading varied from 65 to 350 mg/L. However, intermittent aeration caused nitrate accumulation of 300 mg/L and limited total nitrogen (TN) removal of 33%. To intensify the TN removal, we verified effluent recirculation to increase the removal efficiency of TN to 78%. These results not only show the potential application of CWs for treatment of high‐strength liquid anaerobic digested slurry, but also indicate the significance of intermittent aeration on the enhanced removal of organic matter and ammonium.  相似文献   

16.
The aim of this work was to evaluate the efficiency of horizontal subsurface flow constructed wetlands (HSFCWs) planted with Typha domingensis and Phragmites australis in the final treatment of dairy wastewater. Ten microcosms-scale reactors simulating HSFCWs were arranged outdoors under a semi-transparent plastic roof. Five replicates were planted with T. domingensis and five with P. australis. In both cases, light expanded clay aggregate (LECA) 10/20 was used as a substrate. Real effluent with previous treatment was used. In order to evaluate contaminant removal efficiencies in each reactor, pH, electrical conductivity, suspended solids, ammonium, nitrate, nitrite, total phosphorus, and chemical oxygen demand (COD) were analyzed before and after treatment. HSFCWs planted with T. domingensis and P. australis were efficient for the final treatment of dairy wastewater. Removal efficiencies obtained in microcosms planted with both macrophytes were over 96% for ammonium and nitrite. Nitrate removal efficiency was 39%. COD decreased along the experiment near 75% for both treatments. High removal percentages for suspended solids (78.4–81.1%) were also achieved. However, systems planted with T. domingensis were significantly more efficient for total phosphorus removal (88.5%) than those planted with P. australis (71.6%).  相似文献   

17.
Removal efficiencies of polycyclic aromatic compounds (PAHs) and linear alkyl benzene sulfonates (LAS) were evaluated in a pilot-scale constructed wetland (CW) system combining a free water surface wetland, a subsurface wetland and a gravel filter in parallel. The effect of parameters such as temperature and mass loading rate was also examined. The subsurface constructed wetland system was found to have the overall best performance on pollutants removal. In particular, the average removal of PAHs and LAS was 79.2% and 55.5% for the SSF (Subsurface Flow) constructed wetland, 68.2% and 30.0% for the FWS (Free Water Surface) constructed wetland and 73.3% and 40.9% for the gravel filter, respectively. Removal efficiency and the estimated first-order volumetric removal rate constant (kv) for both PAHs and LAS decreased with increasing water temperature. The experimental results suggest that the absorption in solid media is the main mechanism for xenobiotics removal in constructed wetlands and that the overall performance of the SSF wetland is significantly better than the FWS wetland or the gravel filter.  相似文献   

18.
《Ecological Engineering》2007,29(2):173-191
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type and porous media material and grain size on the performance of horizontal subsurface flow (HSF) constructed wetlands treating wastewater, five pilot-scale units of dimensions 3 m in length and 0.75 m in width were operated continuously from January 2004 until January 2006 in parallel experiments. Three units contained medium gravel obtained from a quarry. The other two contained one fine gravel and one cobbles, both obtained from a river bed. The three units with medium gravel were planted one with common reeds and one with cattails, and one was kept unplanted. The other two units were planted with common reeds. Planting and porous media combinations were appropriate for comparison of the effect of vegetation and media type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period, four HRTs (i.e., 6, 8, 14 and 20 days) were used, while wastewater temperatures varied from about 2.0 to 26.0 °C. The removal performance of the constructed wetland units was very good, since it reached on an average 89, 65 and 60% for BOD, TKN and ortho-phosphate (P-PO43−), respectively. All pollutant removal efficiencies showed dependence on temperature. It seems that the 8-day HRT was adequate for acceptable removal of organic matter, TKN and P-PO43− for temperatures above 15 °C. Furthermore, based on statistical testing, cattails, finer media and media obtained from a river showed higher removal efficiencies of TKN and P-PO43−.  相似文献   

19.
The aim of this research was to assess the role of the macrophyte Phragmites australis (Cav.) Trin. ex Steud. in experimental temporarily flooded vertical-flow wetland filters treating urban runoff. For 2 years, hydrated nickel and copper nitrate were added to sieved road runoff to simulate contaminated primary treated urban runoff. During the first year, 5-day biochemical oxygen demand (BOD) removal efficiencies were lower in planted filters than in unplanted filters. However, the BOD removal performances of all filters were virtually similar irrespective of the planting regime during the second year. The nutrient removal performance of planted filters was more efficient and stable throughout the season particularly after the filters matured compared to that of unplanted filters. A substantial amount of nitrogen was also removed by harvesting P. australis, though metals were not, when compared to those retained in the filters. Furthermore, higher concentrations of nickel in the effluent were recorded in the planted filters, despite their ability to take up the heavy metals. P. australis provided undesirable conditions for precipitation of Ni by lowering the pH in the processes. Finally, after applying shock loadings of Cu, higher Cu outflow concentrations were recorded for planted in comparison to unplanted filters.  相似文献   

20.
Anaerobic ammonium oxidation (ANAMMOX) may provide an effective nitrogen removal pathway for constructed wetlands with low C/N influent. In a study of domestic sewage treatment, anaerobic ammonium oxidation process was identified in the pilot-scale constructed wetland of a bio-ecological process which was composed of a bio-contact oxidation reactor and a horizontal subsurface flow constructed wetland (CW). To investigate the ANAMMOX establishment in the bio-ecological process, two new CWs (planted and unplanted) were developed to be a control for the pre-existing CW. Under operational conditions of DO 2-3 mg/l, HRT 3.5 h for the bio-contact oxidation reactor, HRT 3 days for CWs, and domestic sewage as influent, the process achieved more than 90% TN removal rate after the ANAMMOX was established. The ANAMMOX bacteria on the media of the constructed wetlands were analyzed by specific polymerase chain reaction (PCR) with ANAMMOX specific primer set AMX818F-AMX1066R. The result of the genetic sequencing showed that the PCR product was related to Candidatus B. anammoxidans (AF375994.1) with 98% sequence similarity. Copy numbers of 16S rRNA gene of ANAMMOX bacteria in the pre-existing CW, the new planted CW and new unplanted CW were 3.47 × 105, 3.02 × 105 and 1.30 × 105, respectively. These results demonstrated that the ANAMMOX process was successfully established and operated consistently in the constructed wetlands with a bio-contact oxidation reactor as a pretreatment, and that vegetation positively affected the growth and enrichment of ANAMMOX bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号