首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three representative cyanobacteria, Synechococcus PCC7942, Anabaena variabilis, and Nostoc muscorum, were studied for their ability to asymmetrically reduce the prochiral ketones 2′‐3′‐4′‐5′‐6′‐pentafluoroacetophenone, ethyl 4‐chloroacetate, 4‐chloroacetophenone, and ethylbenzoylacetate to the corresponding chiral alcohols. Photosynthesis as well as respiration was applied for intracellular regeneration of the NAD(P)H cofactor. It was shown for the first time that all cyanobacteria were able to reduce the prochiral ketones asymmetrically without light for cofactor regeneration. By comparison of the cell specific product formation capacities of cyanobacteria with typical heterotrophic whole cell biocatalysts in batch processes, it is shown that comparable or, in some cases, better performances at high enantiomeric excess (ee > 99.8 %) are obtained. As a consequence of a generally strong product inhibition, in situ product removal must be applied in order to restore process efficiency when using cyanobacteria as biocatalysts.  相似文献   

2.
3.
Oxidoreductases represent a highly interesting and versatile class of biocatalysts for specific reduction, oxidation, and oxyfunctionalization reactions. Since oxidoreductases depend on cofactors and coenzymes to supply or withdraw redox equivalents released during the catalytic process, their application in cell-free environments requires external supply with these redox equivalents. Next to enzymatic approaches, a variety of non-enzymatic regeneration strategies have been developed. This review focuses on electrochemical methods for the in situ regeneration of nicotinamide cofactors as well as flavin- and heme-coenzymes, developed for synthetic application. The fields of electrochemical biosensors as well as biofuel cells are not discussed in detail. Electrochemical approaches bear much promise and in some cases are more efficient and more versatile than enzymatic regeneration approaches.  相似文献   

4.
Biocatalysis offers a clean and ecological way to perform chemical processes, in mild reaction conditions and with high degree of selectivity. The use of enzymes, specially lipases, in organic solvents proves an excellent methodology for the preparation of single-isomer chiral drugs. This review covers some general aspects and representative examples of the use of lipases for the enantioselective or regioselective preparation of alcohol and amine intermediates in the synthesis of pharmaceuticals.  相似文献   

5.
Ternary solubility equilibria are studied for three chiral systems in various aqueous and nonaqueous solvents. The chosen systems were a pharmaceutical intermediate, threonine and mandelic acid. Measured solubility data are presented and the nature of the ternary solubility phase diagrams is described. On this basis possible procedures for a crystallization based enantioseparation are derived. Also, the impact of solubility equilibria on the resolution of racemates by liquid chromatography is analyzed and discussed for the systems under investigation. Finally, a hybrid approach coupling both separation techniques for an efficient chiral resolution is demonstrated by means of the fundamental solubility phase diagrams.  相似文献   

6.
The lipase catalyzed resolution of cis and trans-3-amino-4-hydroxytetrahydrofurans and cis-3-amino-4-hydroxypyrrolidines have been studied. For all the heterocycles, the best enantioselectivity was obtained using Candida antarctica lipases A and B as catalysts in hydrolytic processes. The absolute configuration of the optically pure obtained heterocycles has been assigned.  相似文献   

7.
Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5°C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R2 (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.  相似文献   

8.
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.  相似文献   

9.
10.
低温脂肪酶的产酶条件优化及其酶学性质   总被引:2,自引:0,他引:2  
利用单因素筛选和正交试验对Burkholderia sp. SYBC LIP-Y发酵产酶的液体培养基和发酵条件进行了优化,其优化配方为:可溶性淀粉10 g/L、牛肉膏15 g/L、NaNO3 0.252 g/L、橄榄油40ml/L、Triton x-100 10ml/L、初始pH 7.5、接种量10%(V/V),脂肪酶酶活达到85.23U/ml,是优化前的3.63倍。通过对双水相纯化得到的脂肪酶进行酶学性质研究,确定该酶反应的最适pH为10.0,最适温度为30℃,40℃下保温60min酶活性还有80%以上,该脂肪酶为低温脂肪酶,热稳定性好,具有一定的耐醇性,应用前景广阔。  相似文献   

11.
The non‐toxic compound N‐acetyl‐L‐phosphinothricin (N‐Ac‐L‐PPT) is used in a so‐called deacetylation system to induce male sterility in transgenic plants by tapetum specific deacetylation to the herbicide L‐phosphinothricin (L‐PPT). A procedure was developed to produce pure racemic and L‐isomeric N‐Ac‐PPT containing less than 30 ppm residual PPT. Experiments applied to wild type tobacco and PPT‐resistant tobacco showed that the maximal tolerated N‐Ac‐PPT concentration would be less than 45 mM of the L‐isomer. Otherwise unspecific deacetylation by several acylases, as well as by environmental conditions like higher temperatures or pHs beyond neutrality, increased the residual L‐PPT content to toxic concentrations. In contrast, N‐acetyl‐L‐phosphinothricyl‐alanyl‐alanine (N‐Ac‐L‐PPTT), a substance also occurring during the biosynthesis of phosphinothricyl‐alanyl‐alanine (PPTT) by some Streptomyces species, was tolerated up to 274 mM by wild type tobacco plants. However, the ArgE deacatylase from Escherichia coli originally used in the deacetylation system, as well as some other acylases, showed no activity towards N‐Ac‐L‐PPTT.  相似文献   

12.
A small library containing four different series of new ferrocene derivatives, 2‐(alkylsulfanyl)‐1‐ferrocenylethan‐1‐ols, 3‐(alkylsulfanyl)‐1‐ferrocenylpropan‐1‐ols, (E)‐ and (Z)‐2‐(alkylsulfanyl)‐1‐ferrocenylethan‐1‐one oximes, and (E)‐ and (Z)‐3‐(alkylsulfanyl)‐1‐ferrocenylpropan‐1‐one oximes (36 different compounds in total) was synthesized starting from ferrocene and the corresponding sulfanyl acids. All compounds were spectrally (IR and NMR) and electrochemically characterized. In general, the obtained compounds were found to exhibit very strong antimicrobial activities (broth microdilution assay) against the tested microorganisms (six common human pathogens). For the majority of the tested compounds, the determined MIC values were either under the 10 μg/ml MIC limit recognized to delimit efficient antimicrobials or were comparable to/lower than those of the used positive controls (tetracycline/nystatin). The most susceptible organism was found to be Staphylococcus aureus with MIC values even reaching 0.001 μg/ml. The presence of ? CH(OH)(CH2)nS? and ? CH(?NOH)(CH2)nS? (n=1 or 2) structural fragments seems to be essential for the observed strong activity (introduction of hydroxyimino and alcohol functionalities, instead of the keto function, resulted in a more than 105‐fold increase in antistaphylococcal activity in some instances). Nevertheless, a possible influence of the ferrocenyl‐core redox chemistry (Fe2+/Fe3+) should not be disregarded. The studied alcohols exhibited a reversible one‐electron redox couple at almost the same position as ferrocene, while the hydroxyimino group conjugated with cyclopentadienyl ring considerably shifted the redox potential of the ferrocene unit in oximes.  相似文献   

13.
Methylaza-analog of S-adenosyl-l-methionine (MeAzaAdoMet) was found to be a substrate for fluorinase. This is the first discovery of a new substrate for fluorinase that can be accessed synthetically in high purity. The activity of fluorinase for the new MeAzaAdoMet and [18F]fluoride ion was 32% in 180 min.  相似文献   

14.
It has been discovered that phosphatases [alkaline phosphatase, orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1, and acid phosphatase, orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] display a remarkable geometric specificity in the hydrolysis of cis and trans isomers of monoorthophosphate esters of substituted alicy clicalcohols. While steric hindrances prevent potato acid phosphatase from hydrolysing cis-2-methylcyclohexyl and cis-2-methylcyclopentyl phosphates, the corresponding trans isomers are readily hydrolysed by the enzyme (non-enzymatic, acid-catalysed or base-catalysed hydrolyses of the cis and trans isomers occur at similar rates). Cis isomers of methylcyclohexyl phosphates, in which the methyl group is remote from the hydrolysed ester bond, 3- or 4-, have nearly the same reactivities to phosphatases as their trans counterparts. However, if the methyl group in position 4 is replaced by a bulky substituent, e.g. tert-butyl, phosphatases again hydrolyse only the trans and not the cis isomer. These phenomena afford a simple method for preparative separation of cis and trans isomers of alicyclic alcohols: a mixture of the isomers is first phosphorylated with POCl3 and then hydrolysed by phosphatase. The trans alcohol formed is extracted with CCl4, followed by alkaline hydrolysis of the remaining cis-tester and subsequent extraction of the cis alcohol produced.  相似文献   

15.
This minireview emphasizes the importance of control of trace amounts of moisture for biocatalytic reactions performed in organic solvents, no matter whether the solvent is water-soluble or water-immiscible, and whatever state of the biocatalyst is applied. The term 'microaqueous' is introduced to emphasize the importance of moisture control and to describe the reaction system precisely, for all possible biocatalytic forms in organic solvents. States of water molecules in the microaqueous organic solvents containing enzyme are discussed.  相似文献   

16.
Most enzymes provide their optimum performance at a given water activity (aw), which is generally solvent independent. For a given organic liquid solvent at a specific temperature or for a supercritical solvent at a specific temperature and pressure this corresponds to a water concentration in which water has the desired activity. We present here a methodology for predicting this water concentration thus reducing substantially the amount of experimental work needed to find the optimum solvent with respect to equilibrium conversion.

If the enzyme optimum water activity is known, the methodology predicts the required water content in the solvent to achieve this aw value. If, in addition, the enzyme water activity curve is available, this methodology provides the total water that must be added to the system (enzyme plus solvent) so that a specific water activity can be obtained.

The same methodology can also be applied to predict the effect of the total water content of the system (initial or initial plus produced) on the water activity values. It is shown that: (a) for esterification reactions taking place in hydrophobic organic solvents, the produced water can lead to a substantial change in water activity, but not for less hydrophobic solvents; (b) introduction of dry CO2 into a system, pre-equilibrated to a certain water activity at atmospheric pressure, can lead to a substantial decrease in the water activity especially at temperatures just above the critical one of the solvent and pressures larger than that.  相似文献   

17.
In this work, the optimal operating temperature for the enzymatic isomerization of glucose to fructose using a continuous immobilized glucose isomerase packed bed reactor is studied. This optimization problem describing the performance of such reactor is based on reversible pseudo linear kinetics and is expressed in terms of a recycle ratio. The thermal deactivation of the enzyme as well as the substrate protection during the reactor operation is considered. The formulation of the problem is expressed in terms of maximization of the productivity of fructose. This constrained nonlinear optimization problem is solved using the disjoint policy of the calculus of variations. Accordingly, this method of solution transforms the nonlinear optimization problem into a system of two coupled nonlinear ordinary differential equations (ODEs) of the initial value type, one equation for the operating temperature profile and the other one for the enzyme activity. The ODE for the operating temperature profile is dependent on the recycle ratio, operating time period, and the reactor residence time as well as the kinetics of the reaction and enzyme deactivation. The optimal initial operating temperature is selected by solving the ODEs system by maximizing the fructose productivity. This results into an unconstrained one‐dimensional optimization problem with simple bounds on the operating temperature. Depending on the limits of the recycle ratio, which represents either a plug flow or a mixed flow reactor, it is found that the optimal temperature of operation is characterized by an increasing temperature profile. For higher residence time and low operating periods the residual enzyme activity in the mixed flow reactor is higher than that for the plug flow reactor, which in turn allows the mixed flow reactor to operate at lower temperature than that of the plug flow reactor. At long operating times and short residence time, the operating temperature profiles are almost the same for both reactors. This could be attributed to the effect of substrate protection on the enzyme stability, which is almost the same for both reactors. Improvement in the fructose productivity for both types of reactors is achieved when compared to the constant optimum temperature of operation. The improvement in the fructose productivity for the plug flow reactor is significant in comparison with the mixed flow reactor.  相似文献   

18.
A number of synthetically useful methods for asymmetric oxidation of the C-C double bond are briefly reviewed. This includes chemical asymmetric epoxidation, such as Sharpless, Julia, and Jacobsen epoxidation, asymmetric cis-dihydroxylation of olefins, monooxygenase-catalyzed epoxidation, dioxygenase-catalyzed cis-dihydroxylation of aromatics, and trans-dihydroxylation of C-C double bond catalyzed by a monooxygenase and an epoxide hydrolase. The catalytic system, substrate range, enantioselectivity, synthetic application, and scope and limitation of each method are described.  相似文献   

19.
Three pairs of enantiomeric dihydrobenzofuran neolignans (1a/1b-3a/3b) including four new compounds (1a/1b and 2a/2b) were isolated from the fruit of Crataegus pinnatifida. Their structures including the absolute configurations were elucidated by extensive spectroscopic analyses and comparison between the experimental measurements of electronic circular dichroism (ECD) and the calculated ECD spectra. Additionally, all the enantiomeric neolignans were investigated for their neuroprotective activities against H2O2-induced cell injury in human neuroblastoma SH-SY5Y cells. It was found that enantiomers 1a and 1b displayed different degrees of neuroprotective activities, and the results showed enantioselectivity, in which that 1b exhibited noticeable neuroprotective activity, while its enantiomer 1a only exhibited obvious protective effect at lower concentration. Further study demonstrated that the potential protective activities of compounds appeared to be mediated via suppressing cell apoptosis.  相似文献   

20.
We have developed an enzymatic protocol to modify the composition of palmarosa essential oil by acylation of its alcohol components by three different acyl donors at various rates. The resulting modified products were characterized by qualitative and quantitative analyses by gas chromatography, and their olfactory properties were evaluated by professional perfumers. We showed that our protocol resulted in two types of modifications of the olfactory properties. The first and most obvious effect observed was the decrease of the alcohol content, with the concomitant increase of the corresponding esters, along with their fruity notes (pear, most notably). The second and less obvious effect was the expression of notes from minor components ((E)‐β‐ocimene, linalool, β‐caryophyllene, and farnesene), originally masked by the sweet‐floral‐rose odor of geraniol, present in 70% in the palmarosa essential oil used, and emergence of citrus, green, spicy and clove characters in the modified products. This methodology might be considered in the future as a sustainable route to new natural ingredients for the perfumer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号