首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diverse array of molecules involved in signal transduction have recently been recognised as containing a new homology domain, the pleckstrin homology (PH) domain. These include kinases (both serine/threonine and tyrosine specific), all currently known mammalian phospholipase Cs, GTPases, GTPage-activatng proteins, GTpace-exchange factors, “adapter” proteins, cyotskeletal proteins, and kinase substrates. This has sparked a new surge of research into elucidating its sturcture and function. The NMR solution structure of the PH domains of β-spectrin and pleckstrin (the N-terminal domain) both display a core consisting of seven anti-parallel β-sheet strands. The carboxy terminus is folded into a long α-helix. The molecule is electrostatically polarised and contains a pocket which may be involved in the inding of a ligand. The PH domain overall topological relatedness to the retinoid inding protein family of molecules would suggest a lipid ligand could bind to this pocket. the prime function of the PH domain still remains to be elucidated. However, it has been shown to be important in signal transduction, most probably by mediating protein-protein interactions. An extended PH domain of the β-adrenergic receptor kinase (βARK), as well as that of several other molecules, can bind to βγ subunits of the heterotrimeric G-proteins. The possibility that the PH domain, which is found in so many signalling molecules, being generally inovolved in βγ binding site appear to be concomitant in βARK, detailed analysis indicates that the PH domain is not generally a βγ binding domain. Thus, the race is on to find the ligands of each PH domain and determine a common nature to their interaction.  相似文献   

2.
A fraction of Bruton's tyrosine kinase (Btk) co-localizes with actin fibers upon stimulation of mast cells via the high affinity IgE receptor (FcepsilonRI). In this study, a molecular basis of the Btk co-localization with actin fibers is presented. Btk and other Tec family tyrosine kinases have a pleckstrin homology (PH) domain at their N termini. The PH domain is a short peptide module frequently found in signal-transducing proteins and cytoskeletal proteins. Filamentous actin (F-actin) is shown to be a novel ligand for a subset of PH domains, including that of Btk. The actin-binding site was mapped to a 10-residue region of the N-terminal region of Btk. Basic residues in this short stretch are demonstrated to be involved in actin binding. Isolated PH domains induced actin filament bundle formation. Consistent with these observations, Btk binds F-actin in vitro and in vivo. Wild-type Btk protein is in part translocated to the cytoskeleton upon FcepsilonRI cross-linking, whereas Btk containing a mutated PH domain is not. Phosphatidylinositol 3,4, 5-trisphosphate-mediated membrane translocation of Btk was enhanced in cytochalasin D-pretreated, FcepsilonRI-stimulated mast cells. These data indicate that PH domain-mediated F-actin binding plays a role in Btk co-localization with actin filaments.  相似文献   

3.
The translocation of pleckstrin homology (PH) domain-containing proteins from the cytoplasm to the plasma membrane plays an important role in the chemotaxis mechanism of Dictyostelium cells. The diffusion of three PH domain-green fluorescent protein (GFP) fusions (PH2-GFP, PH10-GFP, and PH-CRAC (cytosolic regulator of adenylyl cyclase)-GFP) in the cytoplasm of vegetative and chemotaxing Dictyostelium cells has been studied using fluorescence correlation spectroscopy to gain a better understanding of the functioning of the domains and to assess the effect of initiation of chemotaxis on these domains in the cell. PH2-GFP was homogeneously distributed in vegetative as well as chemotaxing cells, whereas PH10-GFP and PH-CRAC-GFP showed translocation to the leading edge of the chemotaxing cell. The diffusion characteristics of PH2-GFP and PH-CRAC-GFP were very similar; however, PH10-GFP exhibited slower diffusion. Photon counting histogram statistics show that this slow diffusion was not due to aggregation. Diffusion of the three PH domains was affected to similar extents by intracellular heterogeneities in vegetative as well as chemotaxing cells. From the diffusion of free cytoplasmic GFP, it was calculated that the viscosity in chemotaxing cells was 1.7 times lower than in vegetative cells. In chemotaxing cells, PH2-GFP showed increased mobility, whereas the mobilities of PH10-GFP and PH-CRAC-GFP remained unchanged.  相似文献   

4.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

5.
Mouse alpha 1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to bind phosphatidylinositol 4, 5-bisphosphate (PtdIns4,5P2). Half-maximal binding occurred at 1.9 microM PtdIns4,5P2 and when 1.2 PtdIns4,5P2 were added per syntrophin. Binding was specific for PtdIns4,5P2 and did not occur with six other tested lipids including the similar phosphatidylinositol 4-phosphate. Binding was localized to the N-terminal pleckstrin homology domain (PH1); the second, C-terminal PH2 domain did not bind lipids. Key residues in PtdIns4,5P2 binding to a PH domain were found to be conserved in alpha-syntrophins' PH1 domains and absent in PH2 domains, suggesting a molecular basis for binding.  相似文献   

6.
Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.  相似文献   

7.
G Carpenter 《FASEB journal》1992,6(14):3283-3289
Among the intracellular milieu of proteins are molecules with defined biochemical functions that serve as substrates for ligand-activated tyrosine kinase receptors. It seems likely that some of these substrate molecules are elements of a critical signaling pathway used by growth factors to control cell proliferation and subverted by oncogenes to deregulate this process. Although the process of cell growth and division is relatively slow compared with other hormonally regulated responses, homeostasis in a human being requires approximately 20 x 10(6) cell divisions per second for the renewal of various cell populations. This review summarizes the present understanding of tyrosine kinase substrates that seem likely to have key roles in the signal transduction pathway that regulates cell proliferation. This includes structural features of these molecules, the influence of tyrosine phosphorylation on their functions, the biological roles of these proteins, and the capacity of these substrates to associate with activated receptor tyrosine kinases.  相似文献   

8.
p13suc1 (suc1) has two native states, a monomer and a domain-swapped dimer. The structure of each subunit in the dimer is identical to that of the monomer, except for the hinge loop that connects the exchanging domains. Here we find that single point mutations at sites throughout the protein and ligand binding both shift the position of the equilibrium between monomer and dimer. The hinge loop was shown previously to act as a loaded molecular spring that releases tension present in the monomer by adopting an alternative conformation in the dimer. The results here indicate that the release of strain propagates throughout the entire protein and alters the energetics of regions remote from the hinge. Our data illustrate how the signal conferred by the conformational change of a protein loop, elicited by domain swapping, ligand binding or mutation, can be sensed by a distant active site. This work highlights the potential role of strained loops in proteins: the energy they store can be used for both signal transduction and allostery, and they could steer the evolution of protein function. Finally, a structural mechanism for the role of suc1 as an adapter molecule is proposed.  相似文献   

9.
卫卓赟  黎家 《生命科学》2011,(11):1106-1113
油菜素内酯(brassinosteroids,BRs)是一类重要的类固醇激素,参与调控植物生长发育的许多过程。结合应用遗传学、生物化学以及蛋白质组学等研究手段现已基本阐明了BR信号转导的主要过程。BRI1作为受体在细胞表面感知BR,BRI1抑制子BKI1从质膜上解离下来,使BRI1与其共受体BAK1结合。BRI1和BAK1通过顺序磷酸化将BR信号完全激活。活化的BRI1将BSK磷酸化激活,BSK活化BSU1,BSU1将BIN2去磷酸化使其失活,解除BIN2对BES1/BZR1的抑制功能。PP2A可以将BES1/BZR1去磷酸化激活,又可以将受体BRI1去磷酸化促使其降解。BR信号的传递最终使去磷酸化状态的BES1/BZR1在细胞内累积,激活BR信号通路下游的转录调控。  相似文献   

10.
Precise balance between phosphorylation, catalyzed by protein kinases, and dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Deregulation of this balance leads to pathophysiological states that drive diseases such as cancer, heart disease, and diabetes. The recent discovery of the PHLPP (pleckstrin homology domain leucine-rich repeat protein phosphatase) family of Ser/Thr phosphatases adds a new player to the cast of phosphate-controlling enzymes in cell signaling. PHLPP isozymes catalyze the dephosphorylation of a conserved regulatory motif, the hydrophobic motif, on the AGC kinases Akt, PKC, and S6 kinase, as well as an inhibitory site on the kinase Mst1, to inhibit cellular proliferation and induce apoptosis. The frequent deletion of PHLPP in cancer, coupled with the development of prostate tumors in mice lacking PHLPP1, identifies PHLPP as a novel tumor suppressor. This minireview discusses the structure, function, and regulation of PHLPP, with particular focus on its role in disease.  相似文献   

11.
12.
FHA: a signal transduction domain with diverse specificity and function   总被引:4,自引:0,他引:4  
The structure of the FHA domain of the Chfr mitotic checkpoint protein described in this issue of Structure represents one of only a few known structures of this newly discovered phosphoprotein binding domain with diverse function and specificity.  相似文献   

13.
Intracellular signalling molecules form pathways inside the cell. These pathways carry a signal to target proteins which results in cellular responses. We consider a spherical cell with two internal compartments containing localized activating enzymes where as deactivating enzymes are spread uniformly through out the cytosol. Two diffusible signalling molecules are activated at the compartments and later deactivated in the cytosol due to deactivating enzymes. The two signalling molecules are a single link in a cascade reaction and form a self regulated dynamical system involving positive and negative feedback. Using matched asymptotic expansions we obtain approximate solutions of the steady state diffusion equation with a linear decay rate. We obtain three-dimensional concentration profiles for the signalling molecules. We also investigate an extension of the above system which has multiple cascade reactions occurring between multiple signalling molecules. Numerically, we show that the speed of the signal is an increasing function of the number of links in the cascade.  相似文献   

14.
Turning cells red: signal transduction mediated by erythropoietin   总被引:15,自引:0,他引:15  
Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.  相似文献   

15.
Among human serotonin (5-HT) receptor subtypes, each G protein-coupled receptor subtype is reported to have one G protein-signaling cascade. However, the signaling may not be as simple as previously thought to be. 5-HT5A receptors are probably the least well understood among the 5-HT receptors, but the authors found that 5-HT5A receptors couple to multiple signaling cascades. When the 5-HT5A receptors were expressed in undifferentiated C6 glioma cells, they modulated the level of second messengers. For example, activation of 5-HT5A receptors inhibited the adenylyl cyclase activity and subsequently reduced the cAMP level, as previously reported. In addition to this known signaling via Gi/Go, 5-HT5A receptors are coupled to the inhibition of ADP-ribosyl cyclase and cyclic ADP ribose formation. On the other hand, activation of 5-HT5A receptors transiently opened the K+ channels, presumably due to the increase in intracellular Ca2+ after formation of inositol (1,4,5) trisphosphate. The K+ currents were inhibited by both heparin and pretreatment with pertussis toxin, suggesting the cross-talk between Gi/Go protein and phopholipase C cascade. Thus, the authors results indicate that 5-HT5A receptors couple to multiple second messenger systems and may contribute to the complicated physiological and pathophysiological states. Although this multiple signaling has been reported only for 5-HT5A/5-HT1 receptors so far, it is possible that other 5-HT receptor subtypes bear similar complexity. As a result, in addition to the wide variety of expression patterns of each 5-HT receptor subtype, it is possible that multiple signal transduction systems may add complexity to the serotonergic system in brain function. The investigation of these serotonergic signaling and its impairment at cellular level may help to understand the symptoms of brain diseases.  相似文献   

16.
Pleckstrin homology (PH) domains are present in key proteins involved in many vital cell processes. For example, the PH domain of Bruton's tyrosine kinase (Btk) binds to phosphatidylinositol triphosphate (PIP(3)) in the plasma membrane after stimulation of the B-cell receptor in B cells. Mutations in the Btk PH domain result in changes in its affinity for PIP(3), with higher binding leading to cell transformation in vitro and lower binding leading to antibody deficiencies in both humans and mice. We describe here a fluorescence resonance energy transfer (FRET)-based biochemical assay that directly monitors the interaction of a PH domain with PIP(3) at a membrane surface. We overexpressed a fusion protein consisting of an enhanced green fluorescent protein (GFP) and the N-terminal 170 amino acids of a Tec family kinase that contains its PH domain (PH170). Homogeneous unilamellar vesicles were made that contained PIP(3) and octadecylrhodamine (OR), a lipophilic FRET acceptor for GFP. After optimization of both protein and vesicle components, we found that binding of the GFP-PH170 protein to PIP3 in vesicles that contain OR results in about a 90% reduction of GFP fluorescence. Using this assay to screen 1440 compounds, we identified three that efficiently inhibited binding of GFP-PH170 to PIP(3) in vesicles. This biochemical assay readily miniaturized to 1.8-microl reaction volumes and was validated in a 3456-well screening format.  相似文献   

17.
Ganglioside GM3 inhibition of EGF receptor mediated signal transduction   总被引:3,自引:2,他引:1  
Ganglioside GM3 is a membrane component that has been describedto modulate cell growth through inhibition of EGF receptor associatedtyrosine kinase. In order to determine if the inhibition ofcell growth by this ganglioside is specifically mediated throughEGF receptor signaling, the effects of GM3 on key enzymes implicatedin EGF signaling were determined and compared to another inhibitorof the EGF receptor kinase. Treatment of A1S cells in cultureby GM3 or a tyrosine kinase inhibitor, leflunomide, led to theinhibition of MAP kinase and PI3 kinase activities. There wasno detectable effect on phosphotyrosine phosphatases. In a cellfree system, however, GM3 had no effect on the activity of thesesignaling intermediates. Leflunomide was able to directly inhibitMAP kinase activity. GM3 and leflunomide were also found toact differently on the expression of the early immediate genes.The expression of c-fos and c-jun was inhibited by both GM3and leflunomide. The expression of c-myc, however, was onlyinhibited by leflunomide. These findings suggest that the actionof GM3 on cell growth and signaling is specifically mediatedby EGF receptor and that this ganglioside does not act directlyon the intracellular intermediates of EGF receptor signaling.In addition, soluble small molecule tyrosine kinase inhibitorssuch as leflunomide can directly affect the activity of MAPkinases and possibly other signaling intermediates. The directeffects of leflunomide on signaling intermediates may explainthe differential effects of leflunomide and GM3 on gene expressionand cell growth. cell growth epidermal growth factor gangliosides GM3 signal transduction  相似文献   

18.
The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage.TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice.During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice.Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号