首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

2.
Functional genomics: learning to think about gene expression data.   总被引:2,自引:0,他引:2  
R Brent 《Current biology : CB》1999,9(9):R338-R341
Three recent studies of gene expression patterns in whole cells provide examples of the inferences one can make from this type of information. They also provide examples of the non-traditional types of reasoning we will need to use to make such inferences.  相似文献   

3.
4.
5.
Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.  相似文献   

6.
Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 °C and 24 °C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii) and N2 (Bristol). No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 °C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.  相似文献   

7.
We present a fast, versatile and adaptive-multiscale algorithm for analyzing a wide-variety of DNA microarray data. Its primary application is in normalization of array data as well as subsequent identification of 'enriched targets', e.g. differentially expressed genes in expression profiling arrays and enriched sites in ChIP-on-chip experimental data. We show how to accommodate the unique characteristics of ChIP-on-chip data, where the set of 'enriched targets' is large, asymmetric and whose proportion to the whole data varies locally. SUPPLEMENTARY INFORMATION: Supplementary figures, related preprint, free software as well as our raw DNA microarray data with PCR validations are available at http://www.math.umn.edu/~lerman/supp/bioinfo06 as well as Bioinformatics online.  相似文献   

8.
We combined traditional quantitative genetics and oligonucleotide microarrays to examine within-population genetic variation in a trait closely related to fitness. The trait, male reproductive success under competitive conditions (MCRS), is of central importance to both life-history and sexual-selection theory. We identified 27 candidate genes whose expression levels were associated with within-population variation in MCRS. "High" MCRS was associated with low expression of a cytochrome P450 that causes pesticide resistance, suggesting a fitness cost to resistance. Two groups of metabolic proteins (glutathione transferases and phosphatases) were significantly over-represented, and a large portion of the candidates are genes involved in oxidative stress resistance, energy acquisition or energy storage. Genes expressed in accessory glands and testes were not over-represented among differentially expressed genes, but testis-expressed genes were significantly more likely to be upregulated in high MCRS genotypes. Finally, nine candidate genes that we identified had no previous functional annotation, and this experiment suggests that they play a role in male reproductive success.  相似文献   

9.
10.
Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.  相似文献   

11.
12.
13.
14.
15.
Large volumes of genomic data have been generated for several plant species over the past decade, including structural sequence data and functional annotation at the genome level. Various technologies such as expressed sequence tags (ESTs), massively parallel signature sequencing (MPSS) and microarrays have been used to study gene expression and to provide functional data for many genes simultaneously. This review focuses on recent advances in the application of microarrays in plant genomic research and in gene expression databases available for plants. Large sets of Arabidopsis microarray data are publicly available. Recently developed array platforms are currently being used to generate genome-wide expression profiles for several crop species. Coupled to these platforms are public databases that provide access to these large-scale expression data, which can be used to aid the functional discovery of gene function.  相似文献   

16.
17.
18.
19.
水稻、拟南芥等模式植物基因组测序计划的完成,验证预测基因的功能成为植物功能基因组学的重要内容,基因打靶(gene targeting)技术在哺乳动物中的成功应用为该技术在植物上展现了广阔的应用前景。现对植物基因打靶技术的影响因素、基因打靶在植物中的应用现状作一介绍。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号