首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avian adenovirus CELO can, like the human adenoviruses, transform several mammalian cell types, yet it lacks sequence homology with the transforming, early regions of human adenoviruses. In an attempt to identify how CELO virus activates the E2F-dependent gene expression important for S phase in the host cell, we have identified two CELO virus open reading frames that cooperate in activating an E2F-inducible reporter system. The encoded proteins, GAM-1 and Orf22, were both found to interact with the retinoblastoma protein (pRb), with Orf22 binding to the pocket domain of pRb, similar to other DNA tumor virus proteins, and GAM-1 interacting with pRb regions outside the pocket domain. The motif in Orf22 responsible for the pRb interaction is essential for Orf22-mediated E2F activation, yet it is remarkably unlike the E1A LxCxD and may represent a novel form of pRb-binding peptide.  相似文献   

2.
3.
Hybrid adenovirus type 12 (Ad12)/Ad5 E1A genes were constructed by homologous recombination in Escherichia coli, a technique which offers several advantages over conventional mutagenesis for genetic analysis of proteins. In particular, functional differences between the proteins can be mapped by correlating the replacement of specific sequences with the acquisition of new properties, and there is no requirement for common unique restriction sites or polymerase chain reaction strategies to construct the hybrids. Recombinant adenoviruses expressing these hybrid E1A proteins were capable of replicating efficiently in HeLa cells, with the exception of one construct which contained a hybrid transactivation domain. The transforming activity of the hybrid E1A constructs was assayed by DNA transfection of primary baby rat kidney cells. Plasmids containing Ad12 E1 were approximately 20-fold less efficient at transformation than those with E1 of Ad5, and it was found that two regions in exon 1 of E1A mediate this difference. No differences were found in the abilities of any hybrid E1A proteins to bind to cellular proteins previously determined to be important for transformation by E1A.  相似文献   

4.
5.
The transforming E1 regions of human adenoviruses Ad5 and Ad12 differ from each other in the frequency by which they can transform primary baby rat kidney cells, and in their ability to modulate expression of class I major histocompatibility (MHC) genes. We have investigated whether these two properties, which are determined by region E1a, can be assigned to one of the two protein segments encoded by the E1a exons. To that end, we have constructed chimaeric E1a regions, in which the 5'' E1a exon of Ad5 was linked to the 3'' E1a exon of Ad12, and vice versa. It was found that, although there is only a limited degree of homology between Ad5 and Ad12 E1a (approximately 40% at the protein level), the hybrid E1a products are functional in transformation. Furthermore, both the frequency of transformation and the modulation of class I MHC gene expression appeared to be determined by the first E1a exon. These results indicate that the first E1a exon encodes a separate functional domain in the E1a proteins.  相似文献   

6.
We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected with the recombinant virus were shown to contain the Ad12-specific E1 proteins of 41 kilodaltons (E1a) and 19 and 54 kilodaltons (both encoded by E1b). The recombinant virus replicated efficiently in human embryonic kidney cells and HeLa cells, showing that the transforming regions of Ad5 and Ad12 had similar functions in productive infection. After the recombinant virus was injected into newborn hamsters, no tumors were produced during an observation period of 200 days. Thus, despite the fact that all products required for oncogenic transformation in vitro were derived from the highly oncogenic Ad12, the recombinant virus did not produce tumors in vivo. These data show that tumor induction by adenovirus virions is not determined only by the gene products of the transforming region.  相似文献   

7.
8.
The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions.  相似文献   

9.
Virus specific, major histocompatibility complex-restricted, cytotoxic T lymphocytes (CTL) generated in Fischer strain rats infected with human adenovirus type 5 (Ad5) were found to recognize antigenic determinants encoded within the Ad5 early region 1A (E1A) gene. Preliminary mapping studies suggest that the E1A CTL epitopes are encoded within the regions between bp 625 to 810 and 916 to 974 in the first exon of this gene. These epitope-coding regions occur within subregions of E1A that are conserved functionally, and to some extent structurally (approximately 50% sequence homology), among adenoviruses of different groups. Nevertheless, Ad5-specific CTL lysed only targets infected with adenoviruses of the same group (group C; e.g., Ad2) and not targets infected with adenoviruses of different groups (groups A, B, and E). These results suggest that virus-specific CTL may limit adenoviral dissemination by destroying virus-infected cells at an early stage in the viral replicative cycle, during E1A gene expression. Expression of other adenovirus genes does not appear to be required to target infected cells for elimination by CTL.  相似文献   

10.
An essential oncogenic determinant of subgroup D human adenovirus type 9 (Ad9), which uniquely elicits estrogen-dependent mammary tumors in rats, is encoded by early region 4 open reading frame 1 (E4 ORF1). Whereas Ad9 E4 ORF1 efficiently induces transformed foci on the established rat embryo fibroblast cell line CREF, the related subgroup A Ad12 and subgroup C Ad5 E4 ORF1s do not (R. T. Javier, J. Virol. 68:3917-3924, 1994). In this study, we found that the lack of transforming activity associated with non-subgroup D adenovirus E4 ORF1s in CREF cells correlated with significantly reduced protein levels compared to Ad9 E4 ORF1 in these cells. In the human cell line TE85, however, the non-subgroup D adenovirus E4 ORF1s produced protein levels higher than those seen in CREF cells as well as transforming activities similar to that of Ad9 E4 ORF1, suggesting that all adenovirus E4 ORF1 polypeptides possess comparable cellular growth-transforming activities. In addition, searches for known proteins related to these novel viral transforming proteins revealed that the E4 ORF1 proteins had weak sequence similarity, over the entire length of the E4 ORF1 polypeptides, with a variety of organismal and viral dUTP pyrophosphatase (dUTPase) enzymes. Even though adenovirus E4 ORF1 proteins lacked conserved protein motifs of dUTPase enzymes or detectable enzymatic activity, E4 ORF1 and dUTPase proteins were predicted to possess strikingly similar secondary structure arrangements. It was also established that an avian adenovirus protein, encoded within a genomic location analogous to that of the human adenovirus E4 ORF1s, was a genuine dUTPase enzyme. Although no functional similarity was found for the E4 ORF1 and dUTPase proteins, we propose that human adenovirus E4 ORF1 genes have evolved from an ancestral adenovirus dUTPase and, from this structural framework, developed novel transforming properties.  相似文献   

11.
Gene organization of the transforming region of adenovirus type 7 DNA   总被引:8,自引:0,他引:8  
R Dijkema  B M Dekker  H van Ormondt 《Gene》1982,18(2):143-156
The sequence of the leftmost 11% of the weakly oncogenic human adenovirus type 7 (Ad7) DNA has been determined. This part of the Ad7 viral genome encompasses early region E1 which has been shown to be involved in the process of cell transformation in vitro (Dijkema et al., 1979). From the nucleotide sequence and determined coordinates of the E1 mRNAs, we are able to predict the primary structure of the polypeptides encoded by the transforming region of Ad7. The organization of the E1 region of Ad7 and of other adenovirus serotypes (Bos et al. 1981) leads to the proposal of a novel mechanism for gene regulation at the translational level in which protein synthesis can initiate at either the first or the second AUG triplet available in mRNA. The differences between the large E1b-specific tumor antigens of adenovirus types 12, 7 and 5 may explain the differences in oncogenicity of these viruses.  相似文献   

12.
Transforming Potential of the Adenovirus Type 5 E4orf3 Protein   总被引:6,自引:4,他引:2       下载免费PDF全文
Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation.  相似文献   

13.
The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.  相似文献   

14.
H van Ormondt  J Maat  C P van Beveren 《Gene》1980,11(3-4):299-309
The sequence of the leftmost 11.3% of the non-oncogenic human adenovirus type 5 (Ad5) DNA has been determined. This segment contains the entire early region E1 of the Ad5 genome which has been shown to be involved in in vitro transformation of non-permissive rodent cells (Van der Eb et al., 1980). From the DNA sequence, and from the mRNA sequence data obtained by Perricaudet et al, (1979, 1980) for the E1 mRNAs from the closely related adenovirus type 2 (Ad2), it is possible to predict the primary structure of the polypeptides encoded by this region. The function of these proteins in cell transformation is discussed. From the positions of mapped restriction endonuclease sites and termini of RNA segments in the nucleotide sequence the length of the Ad5 DNA is estimated to be 36.6 kb.  相似文献   

15.
When a strong promoter derived from the mouse metallothionein gene was substituted for the homologous adenovirus type 2 E1a promoter, leading to enhanced levels of E1a RNAs and proteins in cells transfected with the chimeric gene, the E1a gene alone was able to induce in established cell lines alterations in cellular morphology and growth properties similar to those produced by the combined action of E1a and E1b genes. The qualitative effects of E1a gene expression upon cellular properties thus depend on the level of expression of the E1a gene. Furthermore, E1a may be the primary transforming gene of adenoviruses, since it produced many of the characteristics of transformed cells that had previously been attributed to E1b.  相似文献   

16.
Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells.  相似文献   

17.
Among oncogenic adenoviruses, human adenovirus type 9 (Ad9) is unique in eliciting exclusively estrogen-dependent mammary tumors in rats and in not requiring viral E1 region transforming genes for tumorigenicity. Instead, studies with hybrid viruses generated between Ad9 and the closely related nontumorigenic virus Ad26 have roughly localized an Ad9 oncogenic determinant(s) to a segment of the viral E4 region containing open reading frame 1 (E4-ORF1), E4-ORF2, and part of E4-ORF3. Although subsequent findings have shown that E4-ORF1 codes for an oncoprotein essential for tumorigenesis by Ad9, it is not known whether other E4 region functions may similarly play a role in this process. We report here that new results with Ad9/Ad26 hybrid viruses demonstrated that the minimal essential Ad9 E4-region DNA sequences include portions of both E4-ORF1 and E4-ORF2. Investigations with Ad9 mutant viruses additionally showed that the E4-ORF1 protein and certain E4-ORF2 DNA sequences are necessary for Ad9-induced tumorigenesis, whereas the E4-ORF2 and E4-ORF3 proteins are not. In fact, the E4-ORF3 protein was found to antagonize this process. Also pertinent was that certain crucial nucleotide differences between Ad9 and Ad26 within E4-ORF1 and E4-ORF2 were found to be silent with respect to the amino acid sequences of the corresponding proteins. Furthermore, supporting a prominent role for the E4-ORF1 oncoprotein in Ad9-induced tumorigenesis, an E1 region-deficient Ad5 vector that expresses the Ad9 but not the Ad26 E4-ORF1 protein was tumorigenic in rats and, like Ad9, promoted solely mammary tumors. These findings argue that the E4-ORF1 oncoprotein is the major oncogenic determinant of Ad9 and that an undefined regulatory element(s) within the E4 region represents a previously unidentified second function likewise necessary for tumorigenesis by this virus.  相似文献   

18.
"Hit-and-run" transformation by adenovirus oncogenes   总被引:5,自引:0,他引:5  
According to classical concepts of viral oncogenesis, the persistence of virus-specific oncogenes is required to maintain the transformed cellular phenotype. In contrast, the "hit-and-run" hypothesis claims that viruses can mediate cellular transformation through an initial "hit," while maintenance of the transformed state is compatible with the loss ("run") of viral molecules. It is well established that the adenovirus E1A and E1B gene products can cooperatively transform primary human and rodent cells to a tumorigenic phenotype and that these cells permanently express the viral oncogenes. Additionally, recent studies have shown that the adenovirus E4 region encodes two novel oncoproteins, the products of E4orf6 and E4orf3, which cooperate with the viral E1A proteins to transform primary rat cells in an E1B-like fashion. Unexpectedly, however, cells transformed by E1A and either E4orf6 or E4orf3 fail to express the viral E4 gene products, and only a subset contain E1A proteins. In fact, the majority of these cells lack E4- and E1A-specific DNA sequences, indicating that transformation occurred through a hit-and-run mechanism. We provide evidence that the unusual transforming activities of the adenoviral oncoproteins may be due to their mutagenic potential. Our results strongly support the possibility that even tumors that lack any detectable virus-specific molecules can be of viral origin, which could have a significant impact on the use of adenoviral vectors for gene therapy.  相似文献   

19.
Primary cultures of baby rat kidney (BRK) cells were transformed by intact DNA and DNA fragments of weakly oncogenic human adenovirus types 3 and 7. The smallest fragment found to contain transforming activity was the left-terminal 4% endo R.HindIII fragment (for both adenovirus type 3 and 7 DNAs). The efficiency of transformation of this fragment was low, and no permanent cell line could be established. Left-terminal fragments ranging from 84 to 4,5% of the viral genome could all transform BRK cells with the same efficiency as intact viral DNA. A number of adenovirus type 7 DNA fragment-transformed lines were established and were found to contain persistent viral DNA sequences and adenovirus subgroup B-specific T antigen. Consequently, the transforming functions of adenovirus types 3 and 7 are located at the extreme left-hand end of the genome, and the minimum size for a DNA fragment with transforming activity is 1.0 X 10(6) daltons. These results do not rule out the possibility that viral genes located outside the transforming region may also influence transformation.  相似文献   

20.
Human adenovirus type 9 (Ad9) is unique among oncogenic adenoviruses in that it elicits exclusively mammary tumors in rats and requires the viral E4 region open reading frame 1 (9ORF1) gene for tumorigenicity. The 9ORF1 oncogenic determinant codes for a 14-kDa transforming protein, and three separate regions of this polypeptide, including one at the extreme C terminus, are necessary for transforming activity. In this study, we investigated whether the 9ORF1 transforming protein interacts with cellular factors. Following incubation with cell extracts, a glutathione S-transferase (GST)-9ORF1 fusion protein associated with several cellular phosphoproteins (p220, p180, p160, p155), whereas GST fusion proteins of transformation-defective 9ORF1 C-terminal mutants did not. Similar interactions requiring the 9ORF1 C terminus were revealed with protein-blotting assays, in which a GST-9ORF1 protein probe reacted specifically with cellular polypeptides having gel mobilities resembling those of the 9ORF1-associated cellular phosphoproteins, as well as with additional cellular polypeptides designated p140/p130. In addition, GST fusion proteins containing 9ORF1 C-terminal fragments associated with some of the 9ORF1-associated cellular polypeptides, as did GST fusion proteins of full-length wild-type Ad5 and Ad12 E4 ORF1 transforming proteins. Significantly, the results of coimmunoprecipitation analyses suggested that the same cellular polypeptides also associate with wild-type but not C-terminal-mutant 9ORF1 proteins in vivo. Together, these findings suggest that the 9ORF1 C terminus, which is essential for transformation, participates in specific and direct binding of the 9ORF1 oncoprotein to multiple cellular polypeptides. We propose that interactions with these cellular factors may be responsible, at least in part, for the transforming activity of the 9ORF1 viral oncoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号