首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.  相似文献   

2.
Trypsin has been shown to disrupt normal in vitro morphogenesis of embryonic organ rudiments. Otic tissues derived from 11-, 12-, and 13-day-old mouse embryos were exposed to either Ca++- and Mg++-free PBS or 0.25% trypsin dissolved in Ca++- and Mg++-free PBS prior to explanation into organ culture. Trypsin treatment of otic explants disrupted the expression of the normal pattern of inner-ear development in vitro. There was a direct correlation between the embryonic age at time of exposure to trypsin and the severity of dysmorphogenesis of the inner ear. The younger explants showed abnormalities of both vestibular and auditory structures, whereas with increasing embryonic age, abnormalities were confined more to the auditory portion of the inner ear. The results suggest that integrity of the otocyst basal lamina and epitheliomesenchymal tissue interactions are important factors in early otic development. It is postulated that the major effect of trypsin on inner-ear morphogenesis is through disruption of these factors, which may act to regulate the progressive expression of early otic development.  相似文献   

3.
Axon guidance in the inner ear   总被引:1,自引:0,他引:1  
Statoacoustic ganglion (SAG) neurons send their peripheral processes to navigate into the inner ear sensory organs where they will ultimately become post-synaptic to mature hair cells. During early ear development, neuroblasts delaminate from a restricted region of the ventral otocyst and migrate to form the SAG. The pathfinding mechanisms employed by the processes of SAG neurons as they search for their targets in the periphery are the topic of this review. Multiple lines of evidence exist to support the hypothesis that a combination of cues are working to guide otic axons to their target sensory organs. Some pioneer neurites may retrace their neuronal migratory pathway back to the periphery, yet additional guidance mechanisms likely complement this process. The presence of chemoattractants in the ear is supported by in vitro data showing that the otic epithelium exerts both trophic and tropic effects on the statoacoustic ganglion. The innervation of ectopic hair cells, generated after gene misexpression experiments, is further evidence for chemoattractant involvement in the pathfinding of SAG axons. While the source(s) of chemoattractants in the ear remains unknown, candidate molecules, including neurotrophins, appear to attract otic axons during specific time points in their development. Data also suggest that classical axon repellents such as Semaphorins, Eph/ephrins and Slit/Robos may be involved in the pathfinding of otic axons. Morphogens have recently been implicated in guiding axonal trajectories in many other systems and therefore a role for these molecules in otic axon guidance must also be explored.  相似文献   

4.
Synopsis The effect of fixation and processing upon the morphological appearance of glycogen within the outer hair cells of the guinea-pig was investigated using two methods. In each method, tissue was fixed for 12 h in cold phosphate-buffered 4% paraformaldehyde and eventually dehydrated in ethanol, embedded in Epon 812, and cut into 4 m sections. In procedure A, after complete processing, the sections were tained using the periodic acid-Schiff reaction (PAS) or the periodic acid-thiocarbo-hydrazide-osmium tetroxide (PATCO) reaction which resulted in the appearance of listinct, coarse granules in the cytoplasm of the outer hair cells. Diastase digestion on one of the two matched sections after Epon removal and prior to staining, confirmed the granules to be glycogen. In procedure B, after primary fixation, the tissue was post-fixed in 1% osmium tetroxide and then processed exactly as in procedure A. Here, unless the Epon and osmium was remoyed, there was no staining of the outer hair cell cytoplasm. However, after Epon removal there was diffuse, grainy appearance of the outer hair cell cytoplasm which we considered to be due to glycogen although diastase confirmation was not possible. We have concluded that osmium tetroxide (1) inhibits PAS or PATCO staining, (2) prevents diastase digestion, and (3) prevents the appearance by light microscopy of distinct granules of glycogen.  相似文献   

5.
Vestibular hair cells (V–HCs) in the inner ear have important roles and various functions. When V–HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V–HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V–HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V–HCs.  相似文献   

6.
Aquaporin-mediated fluid regulation in the inner ear   总被引:6,自引:0,他引:6  
1. The sensory functions of the inner ear (hearing and balance) critically depend on the precise regulation of two fluid compartments of highly desparate ion composition, i.e., the endolymph and the perilymph.2. The parameters volume, ion composition, and pH need to be held athomeostasis irrespective of the hydration status of the total organism.3. Specific cellular water channels, aquaporins, have been shown to be essential for the fluid regulation of several organs, e.g., kidney, lung, and brain.4. Because of functional similarities of water regulation in the kidney and inner ear this review initially summarizes some aquaporin functions in the kidney and then focuses on 6 out of 11 mammalian aquaporins that are present in the inner ear (AQP1-6).5. Their potential role in the inner ear fluid control will be discussed on the basis of the respective expression patterns and individual pore properties.6. Further, a working model is presented of how the endolymphatic sac may contribute to inner ear fluid regulation.  相似文献   

7.
Richardson  Guy P.  Fekete  Donna M. 《Brain Cell Biology》1999,28(10-11):779-780
Brain Cell Biology -  相似文献   

8.
9.
Extracellular nucleotide signaling in the inner ear   总被引:3,自引:0,他引:3  
Extracellular nucleotides, particularly adenosine 5′-triphosphate (ATP), act as signaling molecules in the inner ear. Roles as neurotransmitters, neuromodulators, and as autocrine or paracrine humoral factors are evident. The diversity of the signaling pathways for nucleotides, which include a variety of ATP-gated ion channels (assembled from different subtypes of P2X-receptor subunit) and also different subtypes of G protein-coupled nucleotide receptors (P2Y receptors) supports a major physiological role for ATP in the regulation of hearing and balance. Almost invariably both P2X and P2Y receptor expression is apparent in the complex tissue structures associated with the inner-ear labyrinth. However P2X-receptor expression, commonly associated with fast neurotransmission, is apparent not only with the cochlear and vestibular primary afferent neurons, but also appears to mediate humoral signaling via ATP-gated ion channel localization to the endolymphatic surface of the cochlear sensory epithelium (organ of Corti). This is the site of the sound-transduction process and recent data, including both electrophysiological, imaging, and immunocytochemistry, has shown that the ATP-gated ion channels are colocalized here with the mechano-electrical transduction channels of the cochlear hair cells. In contrast to this direct action of extracellular ATP on the sound-transduction process, an indirect effect is apparent via P2Y-receptor expression, prevalent on the marginal cells of the stria vascularis, a tissue that generates the standing ionic and electrical gradients across the cochlear partition. The site of generation of these gradients, including the dark-cell epithelium of the vestibular labyrinth, may be under autocrine or paracrine regulation mediated by P2Y receptors sensitive to both purines (ATP) and pyrimidines such as UTP. There is also emerging evidence that the nucleoside adenosine, formed as a breakdown product of ATP by the action of ectonucleotidases and acting via P1 receptors, is also physiologically significant in the inner ear. P1-receptor expression (including A1, A2, and A3 subtypes) appear to have roles associated with stress, acting alongside P2Y receptors to enhance cochlear blood flow and to protect against the action of free radicals and to modulate the activity of membrane conductances. Given the positioning of a diverse range of purinergic-signaling pathways within the inner ear, elevations of nucleotides and nucleosides are clearly positioned to affect hearing and balance. Recent data clearly supports endogenous ATP- and adenosine-mediated changes in sensory transduction via a regulation of the electrochemical gradients in the cochlea, alterations in the active and passive mechanical properties of the cells of the sensory epithelium, effects on primary afferent neurons, and control of the blood supply. The field now awaits conclusive evidence linking a physiologically-induced modulation of extracellular nucleotide and nucleoside levels to altered inner ear function.  相似文献   

10.
11.
The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.  相似文献   

12.
13.
The effects of noise on health depend both on individual factors and characteristics of sound exposure. In case of acoustic trauma, reversible or irreversible lesions of inner ear components are possible. Most often there is immediately an acute tinnitus and hearing loss. Audiometric tests demonstrate hearing loss on the high frequency, generally focused on 4 kHz. Immediate treatment is recommended even there is no currently indicator of the ability to restore hearing. New perspectives on treatment are directed to local treatment and/or using new procedure as antioxidative treatment. Occupational and leisure are the two conditions in which chronic exposure to noise is found. Detection and prevention of noise-induced hearing loss is easier in case of industrial workers than in case of noise exposition for musicians and other sounds and stage technicians or concert managers, and of course non-professional with exposure to amplified music.  相似文献   

14.
15.
Patterning and morphogenesis of the vertebrate inner ear   总被引:2,自引:0,他引:2  
The positional cues for formation of individual inner ear components are dependent on pre-established axial information conferred by inductive signals from tissues surrounding the developing inner ear. This review summarizes some of the known molecular pathways involved in establishing the three axes of the inner ear, anterior-posterior (AP), dorsal-ventral (DV) and medial-lateral (ML). Signals required to establish the AP axis of the inner ear are not known, but they do not appear to be derived from the hindbrain. In contrast, the hindbrain is essential for establishing the DV axis of the inner ear by providing inductive signals such as Wnts and Sonic hedgehog. Signaling from the hindbrain is also required for the formation of the ML axis, whereas formation of the lateral wall of the otocyst may be a result of first establishing both the AP and DV axes. In addition, this review addresses how genes induced within the otic epithelium as a result of axial specification continue to mediate inner ear morphogenesis.  相似文献   

16.
17.
Summary We investigated at the electron-microscopic level the hair bundles of the macula organs in the inner ear of two species of teleost fish (Rutilus rutilus, Scardinius erythrophthalmus). All hairs (stereovilli) are interconnected by extracellular material that, similar to the cell coat, is well contrasted by application of tannic acid/osmium.The kinocilium is connected to the longest stereovilli via filaments. Filaments also connect the stereovilli at their bases. More distally all stereovilli are linked by thin filaments or very short solid connectors.The interconnections of the stereovilli in fish show greater variations, and are different in structural detail and distribution, compared to the interconnections described for amphibians and mammals. The interconnections are discussed in the context of their structural and functional significance and variations in terms of organ- and species specificity. Certain forms of interconnections are tentatively interpreted to be characteristic for developing hair bundles.  相似文献   

18.
19.
Summary The maculae utriculi and sacculi of the inner ear from the European roach (Rutilus rutilus) were investigated by transmission electron microscopy. The stereovilli of peripherally and centrally located sensory cells differ in several features that suggest a developmental gradient. The stereovilli of the peripheral sensory cells, shown to be differentiating cells by other research groups, are short and less steeply graded in height than in central hair cells. All stereovilli in both kinds of hair bundles are interconnected. In the central bundles of stereovilli basal, tip, and vertical connectors are separated by unconnected regions. In contrast, filaments and sometimes other additional structures connect the stereovilli of peripheral bundles over their entire length, but vertical connectors are usually absent. Osmiophilic material occurring inside peripheral stereovilli is interpreted to be monomeric actin. Central and peripheral hair bundles also differ in their reaction to ruthenium red and cationized ferritin. Only the stereovilli of the central cells can be fused by these polycations. Ruthenium red also discriminates between supporting and sensory cells indicating differences in amount or distribution of extracellular material. Hair bundles, intermediate in properties and position between central and peripheral sensory cells, were also found, so that it became possible to propose a scheme of developmental steps leading from microvilli or microvillus-like stereovilli to the fully differentiated hair bundle.  相似文献   

20.
《Biophysical journal》2021,120(19):4142-4148
The inner ear is one of the most complex structures in the mammalian body. Embedded within it are the hearing and balance sensory organs that contain arrays of hair cells that serve as sensors of sound and acceleration. Within the sensory organs, these hair cells are prototypically arranged in regular mosaic patterns. The development of such complex, yet precise, patterns require the coordination of differentiation, growth, and morphogenesis, both at the tissue and cellular scales. In recent years, there is accumulating evidence that mechanical forces at the tissue, the cellular, and the subcellular scales coordinate the development and organization of this remarkable organ. Here, we review recent works that reveal how such mechanical forces shape the inner ear, control its size, and establish regular cellular patterns. The insights learned from studying how mechanical forces drive the inner ear development are relevant for many other developmental systems in which precise cellular patterns are essential for their function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号