首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.  相似文献   

5.
6.
7.
8.
Activated hepatic stellate cells produce increased type I collagen in hepatic fibrosis. The increase in type I collagen protein results from an increase in mRNA levels that is mainly mediated by increased mRNA stability. Protein–RNA interactions in the 3′-UTR of the collagen α1(I) mRNA correlate with stabilization of the mRNA during hepatic stellate cell activation. A component of the binding complex is αCP2. Recombinant αCP2 is sufficient for binding to the 3′-UTR of collagen α1(I). To characterize the binding affinity of and specificity for αCP2, we performed electrophoretic mobility shift assays using the poly(C)-rich sequence in the 3′-UTR of collagen α1(I) as probe. The binding affinity of αCP2 for the 3′-UTR sequence is ~2 nM in vitro and the wild-type 3′ sequence binds with high specificity. Furthermore, we demonstrate a system for detecting protein–nucleotide interactions that is suitable for high throughput assays using molecular beacons. Molecular beacons, developed for DNA–DNA hybridization, are oligonucleotides with a fluorophore and quencher brought together by a hairpin sequence. Fluorescence increases when the hairpin is disrupted by binding to an antisense sequence or interaction with a protein. Molecular beacons displayed a similar high affinity for binding to recombinant αCP2 to the wild-type 3′ sequence, although the kinetics of binding were slower.  相似文献   

9.
10.
11.
12.
Chae J  Kim YC  Cho Y 《Nucleic acids research》2012,40(5):2258-2270
Generation of the 3′ overhang is a critical event during homologous recombination (HR) repair of DNA double strand breaks. A 5′–3′ nuclease, NurA, plays an important role in generating 3′ single-stranded DNA during archaeal HR, together with Mre11–Rad50 and HerA. We have determined the crystal structures of apo- and dAMP-Mn2+-bound NurA from Pyrococcus furiousus (Pf NurA) to provide the basis for its cleavage mechanism. Pf NurA forms a pyramid-shaped dimer containing a large central channel on one side, which becomes narrower towards the peak of the pyramid. The structure contains a PIWI domain with high similarity to argonaute, endoV nuclease and RNase H. The two active sites, each of which contains Mn2+ ion(s) and dAMP, are at the corners of the elliptical channel near the flat face of the dimer. The 3′ OH group of the ribose ring is directed toward the channel entrance, explaining the 5′–3′ nuclease activity of Pf NurA. We provide a DNA binding and cleavage model for Pf NurA.  相似文献   

13.
NADPH-cytochrome P450 oxidoreductase (CPR) plays a central role in chemical detoxification and insecticide resistance in Anopheles gambiae, the major vector for malaria. Anopheles gambiae CPR (AgCPR) was initially expressed in Eschericia coli but failed to bind 2′, 5′-ADP Sepharose. To investigate this unusual trait, we expressed and purified a truncated histidine-tagged version for side-by-side comparisons with human CPR. Close functional similarities were found with respect to the steady state kinetics of cytochrome c reduction, with rates (k cat) of 105 s−1 and 88 s−1, respectively, for mosquito and human CPR. However, the inhibitory effects of 2′,5′-ADP on activity were different; the IC50 value of AgCPR for 2′, 5′ –ADP was significantly higher (6–10 fold) than human CPR (hCPR) in both phosphate and phosphate-free buffer, indicative of a decrease in affinity for 2′, 5′- ADP. This was confirmed by isothermal titration calorimetry where binding of 2′,5′-ADP to AgCPR (K d = 410±18 nM) was ∼10 fold weaker than human CPR (K d = 38 nM). Characterisation of the individual AgFMN binding domain revealed much weaker binding of FMN (Kd = 83±2.0 nM) than the equivalent human domain (Kd = 23±0.9 nM). Furthermore, AgCPR was an order of magnitude more sensitive than hCPR to the reductase inhibitor diphenyliodonium chloride (IC50 = 28 µM±2 and 361±31 µM respectively). Taken together, these results reveal unusual biochemical differences between mosquito CPR and the human form in the binding of small molecules that may aid the development of ‘smart’ insecticides and synergists that selectively target mosquito CPR.  相似文献   

14.
15.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

16.
17.
18.
The role of the distal histidine in regulating ligand binding to adult human hemoglobin (HbA) was re-examined systematically by preparing His(E7) to Gly, Ala, Leu, Gln, Phe, and Trp mutants of both Hb subunits. Rate constants for O2, CO, and NO binding were measured using rapid mixing and laser photolysis experiments designed to minimize autoxidation of the unstable apolar E7 mutants. Replacing His(E7) with Gly, Ala, Leu, or Phe causes 20–500-fold increases in the rates of O2 dissociation from either Hb subunit, demonstrating unambiguously that the native His(E7) imidazole side chain forms a strong hydrogen bond with bound O2 in both the α and β chains (ΔGHis(E7)H-bond ≈ −8 kJ/mol). As the size of the E7 amino acid is increased from Gly to Phe, decreases in kO2′, kNO′, and calculated bimolecular rates of CO entry (kentry′) are observed. Replacing His(E7) with Trp causes further decreases in kO2′, kNO′, and kentry′ to 1–2 μm−1 s−1 in β subunits, whereas ligand rebinding to αTrp(E7) subunits after photolysis is markedly biphasic, with fast kO2′, kCO′, and kNO′ values ≈150 μm−1 s−1 and slow rate constants ≈0.1 to 1 μm−1 s−1. Rapid bimolecular rebinding to an open α subunit conformation occurs immediately after photolysis of the αTrp(E7) mutant at high ligand concentrations. However, at equilibrium the closed αTrp(E7) side chain inhibits the rate of ligand binding >200-fold. These data suggest strongly that the E7 side chain functions as a gate for ligand entry in both HbA subunits.  相似文献   

19.
20.
To investigate the binding of 5′–CpG–3′ sequences by small molecules, two pyrrole (Py)–imidazole (Im) hairpin polyamides, PyImPyIm–γPyImPyIm–βDp (1) and PyIm–βIm–γPyIm–β–Im–β–Dp (2), which recognize the sequence 5′–CGCG–3′, were synthesized. The binding affinities of the 5′–CGCG–3′ sequence to the Py–Im hairpin polyamides were measured by surface plasmon resonance (SPR) analysis. SPR data revealed that dissociation equilibrium constants (Kd) of polyamides 1 and 2 were 1.1 (± 0.3) × 10–6 M and 1.7 (± 0.4) × 10–8 M, respectively. Polyamide 2 possesses great binding affinity for this sequence, 65-fold higher than polyamide 1. Moreover, when all cytosines in 5′–CpGpCpG–3′ were replaced with 5-methylcytosines (mCs), the Kd value of polyamide 2 increased to 5.8 (± 0.7) × 10–9 (M), which indicated about 3-fold higher binding than the unmethylated 5′–CGCG–3′ sequence. These results suggest that polyamide 2 would be suitable to target CpG-rich sequences in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号