共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Biofiltration of volatile organic compounds 总被引:6,自引:0,他引:6
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems. 相似文献
3.
4.
Bergougnoux V Caissard JC Jullien F Magnard JL Scalliet G Cock JM Hugueney P Baudino S 《Planta》2007,226(4):853-866
The localization and timing of production and emission of scent was studied in different Rosa × hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. × hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum
and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that
lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission
of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference
was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed
by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different
techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers
are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues.
Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers. 相似文献
5.
6.
The mycelium of T. borchii (characterized by DNA analysis) grown in sterile liquid medium produced some VOCs. The VOCs were retained on carbographs by passing a flow of helium, isolated and characterized in a GC-MS equipment after a thermal desorption. The compounds present in the VOCs from the mycelium cultures, but not in the VOCs from the control cultures, contained 29 compounds. The main compounds were 1,3-ditertbutylbenzene (16.1 ng/l), 3-methylheptane (9.2 ng/l), butan-2-one (8.8 ng/l), ethynylbenzene (5.6 ng/l), and octan-3-one (4.9 ng/l). 相似文献
7.
Maria Basanta Baharudin Ibrahim Rachel Dockry David Douce Mike Morris Dave Singh Ashley Woodcock Stephen J Fowler 《Respiratory research》2012,13(1):72
Background
Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD) and clinically relevant disease phenotypes.Methods
Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC) analysis.Results
Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup.Conclusion
The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease. 相似文献8.
The need for improved rapid diagnostic tests for tuberculosis disease has prompted interest in the volatile organic compounds (VOCs) emitted by Mycobacterium tuberculosis complex bacteria. We have investigated VOCs emitted by Mycobacterium bovis BCG grown on Lowenstein-Jensen media using selected ion flow tube mass spectrometry and thermal desorption-gas chromatography-mass spectrometry. Compounds observed included dimethyl sulphide, 3-methyl-1-butanol, 2-methyl-1-propanol, butanone, 2-methyl-1-butanol, methyl 2-methylbutanoate, 2-phenylethanol and hydrogen sulphide. Changes in levels of acetaldehyde, methanol and ammonia were also observed. The compounds identified are not unique to M.?bovis BCG, and further studies are needed to validate their diagnostic value. Investigations using an ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) demonstrated the presence of 2-phenylethanol (PEA) in the headspace of cultures of M.?bovis BCG and Mycobacterium smegmatis, when grown on Lowenstein-Jensen supplemented with glycerol. PEA is a reversible inhibitor of DNA synthesis. It is used during selective isolation of gram-positive bacteria and may also be used to inhibit mycobacterial growth. PEA production was observed to be dependent on growth of mycobacteria. Further study is required to elucidate the metabolic pathways involved and assess whether this compound is produced during in vivo growth of mycobacteria. 相似文献
9.
10.
Simian Zhu Stella Corsetti Qifan Wang Chunhui Li Zhihong Huang Ghulam Nabi 《Journal of biophotonics》2019,12(10)
Non‐invasive detection of urinary bladder cancer remains a significant challenge. Urinary volatile organic compounds (VOCs) are a promising alternative to cell‐based biomarkers. Herein, we demonstrate a novel diagnosis system based on an optic fluorescence sensor array for detecting urinary bladder cancer VOCs biomarkers. This study describes a fluorescence‐based VOCs sensor array detecting system in detail. The choice of VOCs for the initial part was based on an extensive systematic search of the literature and then followed up using urinary samples from patients with urinary bladder transitional cell carcinoma. Canonical discriminant analysis and partial least squares discriminant analysis (PLS‐DA) were employed and correctly detected 31/48 urinary bladder cancer VOC biomarkers and achieved an overall 77.75% sensitivity and 93.25% specificity by PLS‐DA modelling. All five urine samples from bladder cancer patients, and five healthy controls were successfully identified with the same sensor arrays. Overall, the experiments in this study describe a real‐time platform for non‐invasive bladder cancer diagnosis using fluorescence‐based gas‐sensor arrays. Pure VOCs and urine samples from the patients proved such a system to be promising; however, further research is required using a larger population sample. 相似文献
11.
12.
T. A. Misharina M. B. Terenina N. I. Krikunova 《Applied Biochemistry and Microbiology》2017,53(5):600-609
The parameters of the process of isolation, concentration, and gas chromatographic analysis of volatile organic compounds by solid-phase microextraction were optimized. With different amounts of a mixture of essential oils, the conditions of reproducibility of their determination were established based on the absolute values of the squares of chromatographic peaks obtained by capillary gas chromatography. It was found that the efficiency of the extraction of volatile compounds from gas phase by sorption on mixed polymer (consisting of polydimethylsiloxane and divinylbenzene) was significantly influenced by the structure of their molecules, while the sorption time and their content in the liquid phase influenced the significance of determination. 相似文献
13.
植物挥发性气体(VOCs)研究进展 总被引:7,自引:0,他引:7
植物挥发性气体(VOCs)在植物一植食性昆虫-天敌三级营养关系、植物间信息传递及适应性改变上都发挥着重要作用.植物释放VOCs具特异性、系统性、时序性与节律性等特点,VOCs主要在寄主选择行为、产卵行为、求偶行为、引来昆虫夭敌干涉等方面影响植食性昆虫.VOCs-介导的植物间信息传递作用包括4个过程:"释放者"植物合成及释放气体、气体在空气中的运输、气体在植物表面的吸附及"接收者"植株对气体信号的感知.收集VOCs的方法主要有吸附-溶剂洗脱法和吸附-热脱附法. 相似文献
14.
It has been shown that various microbial species used in bioreactors for purification of air from volatile organic compounds can grow at alkaline pH values consuming the xenobiotics as sole carbon sources. The alkali tolerance depends on the carbon source. The alkaline pH of the medium reduces the foreign microbial population restricting the potential of the bioreactor. 相似文献
15.
It has been shown that various microbial species used in bioreactors for purification of air from volatile organic impurities can grow at alkaline pH values consuming the xenobiotics as sole carbon sources. The alkali tolerance depends on the carbon source. The alkaline pH of the medium reduces the foreign microbial population restricting the potential of the bioreactor. 相似文献
16.
17.
《Journal of Plant Interactions》2013,8(4):322-325
Abstract In the tritrophic system consisting of tomato, Solanum lycopersicum (L.), the aphid Macrosiphum euphorbiae (Thomas) and its natural enemy, the parasitoid Aphidius ervi (Haliday), it has been shown that the release of volatile organic compounds following aphid attack is responsible for attracting aphid parasitoids in wind tunnel experiments. The main compounds involved in these multitrophic interactions have been characterized and quantified. In this work, the possible activity of such compounds on plant direct defences against the aphid M. euphorbiae was assessed in laboratory tests. The selected compounds were applied to uninfested tomato plants, either by evaporation or contact, and performance of aphids, in terms of plant acceptance, fixing behaviour and aphid development, calculated in standard conditions. The results showed that two compounds, namely methyl salicylate and cis-hex-3-en-1-ol, alter aphid performance. These two compounds have been reported to be those eliciting the best response by A. ervi in terms of flight behavior (wind tunnel bioassay) and antennal stimulation (EAG bioassay). 相似文献
18.
19.
Ram B. Jain 《Biomarkers》2016,21(4):342-346
Cutoff levels on the scales for benzene, ethylbenzene, toluene, styrene, o-xylene and m/p-xylene in blood were developed to classify smokers from non-smokers. Self-reported smoking during the last 5 d was used as the true smoking status. Receiver operating characteristics methods that minimized the difference between specificity and sensitivity were used to develop these cutoffs. Data from National Health and Nutrition Examination Survey for the cycle 2005–2006 were used for this purpose. For the total population, a cutoff of 0.038?ng/ml for benzene was able to classify smokers from non-smokers with a sensitivity of 83.6% and specificity of 83.7%. 相似文献
20.
Samantha Lee Richard Hung Alisa Schink James Mauro Joan W. Bennett 《Plant Growth Regulation》2014,74(2):177-186
Geosmin and C-8 hydrocarbons are among the major volatile organic compounds (VOC) responsible for the distinctive, musty odor of filamentous fungi. In this study, we developed a plant bioassay for testing the possible toxicity of these compounds, as well as four air freshener products sometimes used to mask their odor. Seeds and vegetative plants of Arabidopsis thaliana were exposed to 1 ppm of 14 different volatile treatments (both single compounds and mixtures) for 72 h and monitored for germination rate, seedling formation, vegetative plant vigor and chlorophyll concentration. All VOCs tested had some inhibitory effect on seed germination or seedling formation; 1-octen-3-one was the most active, giving almost complete inhibition of germination. Geosmin did not prevent germination (radicle protrusion) but seedling formation was arrested 90 %. Of solvents and fragrance products tested, only the scented oil product was as active as the C-8 biogenic compounds in inhibiting seed germination and seedling formation. Two-week-old plants exposed to 1 ppm of individual fungal VOCs for 72 h all exhibited some degree of stress symptoms including smaller leaf size and weight, discoloration, leaf curling, small necrotic lesions, and reduced chlorophyll concentration. Two-week-old vegetative plants exposed to solvents and air freshener products were generally smaller in size. The single most phytotoxic compound tested was 1-octen-3-one which almost completely inhibited seed germination and was lethal to vegetative phase plants. Formaldehyde at 1 ppm killed 2-week-old seedlings but had little effect on seed germination. In conclusion, the A. thaliana bioassay provides an inexpensive approach for testing the toxicity of gas phase molecules. 相似文献