首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

2.
To evaluate the response of normal subjects to assisted ventilation, we studied 6 naive healthy subjects before and during negative-pressure ventilation (NPV) with "low" (-10 cmH2O) and "high" (-30 cmH2O) pressures in an Emerson tank respirator. Ventilation was measured with an inductive plethysmograph (Respitrace), and diaphragmatic electromyogram (DEMG) was studied with a bipolar esophageal electrode. During NPV a 1:1 phase lock was observed between subjects and iron lung frequency in all subjects. Tidal volume increased in most subjects, more with high than with low pressures (P less than 0.05), whereas DEMG increased, decreased, or showed no change. Postinspiratory inspiratory diaphragmatic activity (PIIA) significantly increased during high-pressure NPV and was accompanied by an increase in tonic DEMG in one-half of the subjects. Voluntary relaxation resulted in a decrease in DEMG and PIIA. We suggest that cortical activity can explain persistency of active breathing during negative-pressure ventilation.  相似文献   

3.
Ventilation and electromyographic (EMG) activity of the diaphragm were recorded in unanesthetized kittens 2 and 10 wk of age during normoxia, hypercapnia (2 and 4% CO2), and hypoxia (12 and 10% O2). We measured integrated diaphragmatic EMG activity at end inspiration (DIAI) and end expiration (DIAE); the difference (DIAI-E), which represents the phasic change of the diaphragmatic activity, was considered responsible for a given tidal volume (VT). During hypercapnia, the 2-wk-old kittens increased minute ventilation (V) by increases in both VT and respiratory frequency (f), whereas the 10-wk-old kittens increased V primarily by an increase in VT. At both ages, DIAI and DIAI-E increased during hypercapnia, whereas DIAE did not change significantly. During hypoxia, in the young kittens, V and VT decreased while f increased markedly; in the older kittens, V, VT, and f did not change significantly. In kittens of both ages, DIAI increased during hypoxia; because diaphragmatic activity persisted into expiration, DIAE also increased. DIAI-E, as well as VT, was decreased in the young kittens, whereas in the older ones DIAI-E was slightly increased despite an unchanged VT. Finally, the ventilatory and diaphragmatic response to hypoxia changes with maturation in contrast to the response to hypercapnia. It is concluded that 1) the hypoxia-induced reduction of VT may result from prolongation of diaphragmatic activity into expiration, inasmuch as it induces a reduction of the phasic change of the diaphragmatic activity, and 2) because DIAI-E indirectly reflects central inspiratory output, a central mechanism should be involved in the reduced VT and V in response to hypoxia in newborns.  相似文献   

4.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

5.
Persistence of inspiratory muscle activity during the early phase of expiratory airflow slows the rate of lung deflation, whereas heightened expiratory muscle activity produces the opposite effect. To examine the influence of increased chemoreceptor drive and the role of vagal afferent activity on these processes, the effects of progressive hypercapnia were evaluated in 12 anesthetized tracheotomized dogs before and after vagotomy. Postinspiratory activity of inspiratory muscles (PIIA) and the activity of expiratory muscles were studied. During resting breathing, the duration of PIIA correlated with the duration of inspiration but not with expiration. Parasternal intercostal PIIA was directly related to that of the diaphragm. Based on their PIIA, dogs could be divided into two groups: one with prolonged PIIA (mean 0.57 s) and the other with brief PIIA (mean 0.16 s). Hypercapnia caused progressive shortening of the PIIA in the dogs with prolonged PIIA during resting breathing. The electrical activity of the external oblique and internal intercostal muscles increased gradually during CO2 rebreathing in all dogs both pre- and postvagotomy. After vagotomy, abdominal activity continued to increase with hypercapnia but was less at all levels of PCO2. The internal intercostal response to hypercapnia was not affected by vagotomy. The combination of shorter PIIA and augmented expiratory activity with hypercapnia might, in addition to changes in lung recoil pressure and airway resistance, hasten exhalation.  相似文献   

6.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

7.
Ventilation during sleep onset   总被引:1,自引:0,他引:1  
There is now considerable evidence which indicates that respiratory activity is different during sleep compared with wakefulness. However, there has been little work on respiratory changes during the transitional period from wakefulness to sleep. The present study was concerned with the quantitative and temporal properties of ventilation during sleep onset. Sleep onsets were studied in five young male adults in a series of single-subject designs in which sleep onsets were replications. The results indicated that during sleep onset the loss of alpha-activity in the electroencephalogram was associated with a substantial, rapid, and highly predictable reduction in ventilation. The change in ventilation was typically due to a reduction in tidal volume and was, in part, secondary to a reduction in metabolic rate. We speculate that the nonmetabolic component may reflect the loss of waking neural drive to respiration, though the present study did not eliminate a variety of other interpretations.  相似文献   

8.
We examined the effects of chemical and reflex drives on the postinspiratory inspiratory activity (PIIA) of phrenic motoneurons using a single-fiber technique. Action potentials from "single" fibers were recorded from the C5 phrenic root together with contralateral mass phrenic activity (also from C5) in anesthetized, paralyzed, and artificially ventilated cats with intact vagus and carotid sinus nerves. Nerve fibers were classified as "early" or "late" based on their onset of discharge in relation to mass phrenic activity during hyperoxic ventilation. Only the early fibers displayed PIIA but not the late fibers, even when their activity began earlier in inspiration with increased chemical drives. Isocapnic hypoxia increased, whereas hyperoxic hypercapnia shortened the duration of PIIA. Pulmonary stretch and "irritant" receptors inhibited PIIA. Hypercapnia and stimulation of peripheral chemoreceptors by lobeline excited both early and late units to the same extent, but hypoxic ventilation had a less marked excitatory effect on late fiber activity. Irritant receptor activation increased the activity of early more than late fibers. Hyperoxic hyperventilation eliminated late phrenic fiber activity, whereas early fibers became tonically active. Bilateral vagotomy abolished this sustained discharge in eight of nine early units, suggesting the importance of vagal afferents in producing tonic firing during hyperventilation. These results suggest that early and late phrenic fibers have different responses to chemical stimuli and to vagally mediated reflexes; late units do not discharge in postinspiratory period, whereas early fibers do; the PIIA is not affected in the same way by various chemical and vagal inputs; and early units that exhibit PIIA display tonic activity with hyperoxic hypocapnia.  相似文献   

9.
Occlusion pressure and ventilation during sleep in normal humans   总被引:2,自引:0,他引:2  
Previous investigation in normal humans has demonstrated reduced ventilation and ventilatory responses to chemical stimuli during sleep. Most have interpreted this to be a product of decreasing central nervous system sensitivity to the normal stimuli that maintain ventilation, whereas other factors such as increasing airflow resistance could also contribute to this reduction in respiration. To improve our understanding of these events, we measured ventilation and occlusion pressures (P0.1) during unstimulated ventilation and rebreathing-induced hypercapnia during wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. Eighteen subjects (10 males and 8 females) of whom seven were snorers (5 males and 2 females) were studied. Ventilation was reduced during both NREM and REM sleep (P less than 0.05), but this decrement in minute ventilation tended to be greater in snorers than nonsnorers. Unstimulated P0.1, on the other hand, was maintained or increased during sleep in all groups studied, with males and snorers showing the largest increase. The hypercapnic ventilatory response fell during both NREM and REM sleep and tended to be lower during REM than NREM sleep. However, the P0.1 response to hypercapnia during NREM sleep was well maintained at the waking level although the REM response was statistically reduced. These studies suggest that the mechanism of the reduction in ventilation and the hypercapnic ventilatory response seen during sleep, particularly NREM sleep, is likely to be multifactorial and not totally a product of decreasing central respiratory drive.  相似文献   

10.
We studied the ventilatory response to hypoxia in 11 unanesthetized newborn kittens (n = 54) between 2 and 36 days of age by use of a flow-through system. During quiet sleep, with a decrease in inspired O2 fraction from 21 to 10%, minute ventilation increased from 0.828 +/- 0.029 to 1.166 +/- 0.047 l.min-1.kg-1 (P less than 0.001) and then decreased to 0.929 +/- 0.043 by 10 min of hypoxia. The late decrease in ventilation during hypoxia was related to a decrease in tidal volume (P less than 0.001). Respiratory frequency increased from 47 +/- 1 to 56 +/- 2 breaths/min, and integrated diaphragmatic activity increased from 14.9 +/- 0.9 to 20.2 +/- 1.4 arbitrary units; both remained elevated during hypoxia (P less than 0.001). Younger kittens (less than 10 days) had a greater decrease in ventilation than older kittens. These results suggest that the late decrease in ventilation during hypoxia in the newborn kitten is not central but is due to a peripheral mechanism located in the lungs or respiratory pump and affecting tidal volume primarily. We speculate that either pulmonary bronchoconstriction or mechanical uncoupling of diaphragm and chest wall may be involved.  相似文献   

11.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

12.
Animal studies have shown activation of upper airway muscles prior to inspiratory efforts of the diaphragm. To investigate this sequence of activation in humans, we measured the electromyogram (EMG) of the alae nasi (AN) and compared the time of onset of EMG to the onset of inspiratory airflow, during wakefulness, stage II or III sleep (3 subj), and CO2-induced hyperpnea (6 subj). During wakefulness, the interval between AN EMG and airflow was 92 +/- 34 ms (mean +/- SE). At a CO2 level of greater than or equal to 43 Torr, the AN EMG to airflow was 316 +/- 38 ms (P < 0.001). During CO2-induced hyperpnea, the AN EMG to airflow interval and AN EMG magnitude increased in direct proportion to CO2 levels and minute ventilation. During stages II and III of sleep, the interval between AN EMG and airflow increased when compared to wakefulness (P < 0.005). We conclude that a sequence of inspiratory muscle activation is present in humans and is more apparent during sleep and during CO2-induced hyperpnea than during wakefulness.  相似文献   

13.
To the best of our knowledge, there is no simple way to induce neural networks to shift from waking mode into sleeping mode. Our best guess is that a whole group of neurons would be involved and that the process would develop in a period of time and a sequence which are mostly unknown. The quasi-total sensory deprivation elicits a new behavioral state called somnolence. Auditory stimulation as well as total auditory deprivation alter sleep architecture. Auditory units exhibiting firing shifts on passing to sleep (augmenting or diminishing) are postulated to be locked to sleep-related networks. Those ( approximately 50%) that did not change during sleep are postulated to continue informing the brain as in wakefulness. A rhythmic functional plasticity of involved networks is postulated. A number of auditory and visual cells have demonstrated a firing phase locking to the hippocampal theta rhythm. This phase locking occurs both during wakefulness and sleep phases. The theta rhythm may act as an organizer of sensory information in visual and auditory systems, in all behavioral states adding a temporal dimension to the sensory processing. Sensory information from the environment and body continuously modulates the central nervous system activity, over which sleep phenomenology must develop. It also produces a basal tonus during wakefulness and sleep, determining changes in the networks that contribute to sleep development and maintenance and, eventually, it also leads to sleep interruption.  相似文献   

14.
Collapsibility of the human upper airway during normal sleep   总被引:6,自引:0,他引:6  
Upper airway resistance (UAR) increases in normal subjects during the transition from wakefulness to sleep. To examine the influence of sleep on upper airway collapsibility, inspiratory UAR (epiglottis to nares) and genioglossus electromyogram (EMG) were measured in six healthy men before and during inspiratory resistive loading. UAR increased significantly (P less than 0.05) from wakefulness to non-rapid-eye-movement (NREM) sleep [3.1 +/- 0.4 to 11.7 +/- 3.5 (SE) cmH2O.1-1.s]. Resistive load application during wakefulness produced small increments in UAR. However, during NREM sleep, UAR increased dramatically with loading in four subjects although two subjects demonstrated little change. This increment in UAR from wakefulness to sleep correlated closely with the rise in UAR during loading while asleep (e.g., load 12: r = 0.90, P less than 0.05), indicating consistent upper airway behavior during sleep. On the other hand, no measurement of upper airway behavior during wakefulness was predictive of events during sleep. Although the influence of sleep on the EMG was difficult to assess, peak inspiratory genioglossus EMG clearly increased (P less than 0.05) after load application during NREM sleep. Finally, minute ventilation fell significantly from wakefulness values during NREM sleep, with the largest decrement in sleeping minute ventilation occurring in those subjects having the greatest awake-to-sleep increment in UAR (r = -0.88, P less than 0.05). We conclude that there is marked variability among normal men in upper airway collapsibility during sleep.  相似文献   

15.
The aim of the present study was to investigate the effect of hypercapnia and hypoxia on apnea and nonnutritive swallowing (NNS) frequency, as well as on the coordination between NNS and phases of the respiratory cycle in newborn lambs, while taking into account the potential effects of states of alertness. Six lambs were chronically instrumented for recording electroencephalogram, eye movements, diaphragm and thyroarytenoid muscle (a glottal adductor) activity, nasal airflow, and electrocardiogram. Polysomnographic recordings were performed in nonsedated lambs exposed to air (control), 10% O(2), and 5% CO(2) in a random order at 3, 4, and 5 days of age. Although hypercapnia decreased apnea frequency in wakefulness and active sleep (P = 0.002 vs. air and hypoxia), hypoxia had no significant effect on apnea. In addition, although hypercapnia increased NNS frequency during wakefulness and quiet sleep (P < 0.005 vs. air and hypoxia), hypoxia tended to decrease NNS frequency. Finally, only hypercapnia altered NNS-breathing coordination by increasing NNS at the transition from inspiration to expiration (ie-type NNS; P < 0.001 vs. air and hypoxia). In conclusion, whereas hypercapnia increases overall NNS frequency by specifically increasing ie-type NNS, hypoxia has the inverse tendency. Results were identical in all three states of alertness.  相似文献   

16.
We investigated the effect of acute and sustained inspiratory resistive loading (IRL) on the activity of expiratory abdominal muscles (EMGab) and the diaphragm (EMGdi) and on ventilation during wakefulness and non-rapid-eye-movement (NREM) sleep in healthy subjects. EMGdi and EMGab were measured with esophageal and transcutaneous electrodes, respectively. During wakefulness, EMGdi increased in response to acute loading (18 cmH2O.l-1.s) (+23%); this was accompanied by preservation of tidal volume (VT) and minute ventilation (VE). During NREM sleep, no augmentation was noted in EMGdi or EMGab. Inspiratory time (TI) was prolonged (+5%), but this was not sufficient to prevent a decrease in both VT and VE (-21 and -20%, respectively). During sustained loading (12 cmH2O.l-1 s) in NREM sleep, control breaths (C) were compared with the steady-state loaded breaths (SS) defined by breaths 41-50. Steady-state IRL was associated with augmentation of EMGdi (12%) and EMGab (50%). VT returned to control levels, expiratory time shortened, and breathing frequency increased. The net result was the increase in VE above control levels (+5%, P less than 0.01). No change was noted in end-tidal CO2 or O2. We concluded that 1) wakefulness is a prerequisite for immediate load compensation (in its absence, TI prolongation is the only compensatory response) and 2) during sustained IRL, the augmentation of EMGdi and EMGab can lead to complete ventilatory recovery without measurable changes in chemical stimuli.  相似文献   

17.
Nocturnal hypoxia is a major pathological factor associated with cardiorespiratory disease. During wakefulness, a decrease in arterial O2 tension results in a decrease in cerebral vascular tone and a consequent increase in cerebral blood flow; however, the cerebral vascular response to hypoxia during sleep is unknown. In the present study, we determined the cerebral vascular reactivity to isocapnic hypoxia during wakefulness and during stage 3/4 non-rapid eye movement (NREM) sleep. In 13 healthy individuals, left middle cerebral artery velocity (MCAV) was measured with the use of transcranial Doppler ultrasound as an index of cerebral blood flow. During wakefulness, in response to isocapnic hypoxia (arterial O2 saturation -10%), the mean (+/-SE) MCAV increased by 12.9 +/- 2.2% (P < 0.001); during NREM sleep, isocapnic hypoxia was associated with a -7.4 +/- 1.6% reduction in MCAV (P <0.001). Mean arterial blood pressure was unaffected by isocapnic hypoxia (P >0.05); R-R interval decreased similarly in response to isocapnic hypoxia during wakefulness (-21.9 +/- 10.4%; P <0.001) and sleep (-20.5 +/- 8.5%; P <0.001). The failure of the cerebral vasculature to react to hypoxia during sleep suggests a major state-dependent vulnerability associated with the control of the cerebral circulation and may contribute to the pathophysiologies of stroke and sleep apnea.  相似文献   

18.
Obstructive sleep apnea (OSA) is more common in men than in women for reasons that are unclear. The stability of the respiratory controller has been proposed to be important in OSA pathogenesis and may be involved in the gender difference in prevalence. Repetitive hypoxia elicits a progressive rise in ventilation in animals [long-term facilitation (LTF)]. There is uncertainty whether LTF occurs in humans, but if present it may stabilize respiration and possibly also the upper airway. This study was conducted to determine 1) whether LTF exists during wakefulness in healthy human subjects and, if so, whether it is more pronounced in women than men and 2) whether inspiratory pump and upper airway dilator muscle activities are affected differently by repetitive hypoxia. Twelve healthy young men and ten women in the luteal menstrual phase were fitted with a nasal mask and intramuscular genioglossal EMG (EMGgg) recording electrodes. After 5 min of rest, subjects were exposed to ten 2-min isocapnic hypoxic periods (approximately 9% O(2) in N(2), arterial O(2) saturation approximately 80%) separated by 2 min of room air. Inspired minute ventilation (Vi) and peak inspiratory EMGgg activity were averaged over 30-s intervals, and respiratory data were compared between genders during and after repetitive hypoxia by using ANOVA for repeated measures. Vi during recovery from repetitive hypoxia was not different from the resting level and not different between genders. There was no facilitation of EMGgg activity during or after repetitive hypoxia. EMGgg activity was reduced below baseline during recovery from repetitive hypoxia in women. In conclusion, we have found no evidence of LTF of ventilation or upper airway dilator muscle activity in healthy subjects during wakefulness.  相似文献   

19.
Role of upper airway in ventilatory control in awake and sleeping dogs   总被引:1,自引:0,他引:1  
We examined the role of the upper airway in the regulation of the pattern of breathing in six adult dogs during wakefulness and sleep. The dogs breathed through a fenestrated endotracheal tube inserted through a tracheostomy. The tube was modified to allow airflow to be directed either through the nose or through the tracheostomy. When airflow was diverted from nose to tracheostomy there was an abrupt increase in the rate of expiratory airflow, resulting in prolongation of the end-expiratory pause but no change in overall expiratory duration or respiratory frequency. Furthermore, electromyogram recordings from implanted diaphragmatic and laryngeal muscle electrodes did not show any changes that could be interpreted as an attempt to delay expiratory airflow or increase end-expiratory lung volume. The effects of switching from nose to tracheostomy breathing could be reversed by adding a resistance to the endotracheal tube so as to approximate upper airway resistance. The findings indicate that under normal conditions in the adult dog upper airway receptors play little role in regulation of respiratory pattern and that the upper airway exerts little influence on the maintenance of end-expiratory lung volume.  相似文献   

20.
We assessed changes in respiratory muscle timing in response to hyperpnea and shortened inspiratory and expiratory times caused by chemoreceptor stimuli in six awake dogs. Durations of postinspiratory inspiratory activity of costal and crural diaphragm (PIIA), the delay in diaphragm electromyogram (EMG) after the initiation of inspiratory airflow, postexpiratory expiratory activity of the transversus abdominis (PEEA), and the delay of abdominal expiratory muscle activity after the initiation of expiratory airflow were measured. In control, four out of six dogs showed PIIA [8-10% of expiratory time (TE)]; all showed delay of diaphragm [19% of inspiratory time (TI)], delay of abdominal muscle activation (21% of TE), and PEEA (24% of TI). Hypercapnia decreased PIIA (4-9% of TE), maintained diaphragm delay at near control values (23% of TI), increased PEEA (36% of TI), eliminated delay of abdominal muscle activation (4% of TE), and decreased end-expiratory lung volume (EELV). Hypocapnic hypoxia increased PIIA (24-25% of TE), eliminated diaphragm delay (3% of TI), eliminated PEEA (3% of TI), reduced delay of abdominal muscle activation (14% of TE), and increased EELV. Most of these effects of hypoxic hypocapnia vs. hypercapnia on the within-breath EMG timing parameters corresponded to differences in the magnitude of expiratory muscle activation. These changes exerted significant influences on flow rates and EELV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号