首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet.  相似文献   

2.
C L Wang  P C Leavis  J Gergely 《Biochemistry》1984,23(26):6410-6415
The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.  相似文献   

3.
The single tyrosine residue in both pig and cow intestinal Ca2+-binding proteins fluoresces at 303 nm although the crystal structure of the cow protein shows a hydrogen bond between the hydroxy group of the tyrosine and glutamate-38 [Szebenyi & Moffat (1986) J. Biol. Chem. 261, 8761-8777]. The latter interaction suggests that tyrosinate fluorescence should dominate the emission spectra of these proteins. A fluorescence difference spectrum, produced by subtracting the spectrum of free tyrosine from the spectrum of the protein, gives a peak at 334 nm due to ionized tyrosine. That this component of the emission spectrum is not due to a tryptophan-containing contaminant is shown by its elimination when the protein is denatured by guanidine and when glutamate-38 is protonated. We conclude that, in solution, the tyrosine residue in this protein interacts occasionally with glutamate-38 but that a permanent hydrogen bond is not formed.  相似文献   

4.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

5.
The effects of nucleotides and Ca2+ on the intrinsic tryptophan fluorescence of molluscan myosin and its proteolytic fragments were studied. By using these proteins from the scallop, Pecten maximus, the existence of two distinct tryptophan-containing domains was established, which respond independently to ATP and Ca2+-specific binding. The latter is located in the 'neck' region of the myosin, which constitutes the regulatory domain. Subfragment 1, lacking the regulatory domain, responded only to ATP binding. On the other hand a tryptic fragment comprising the regulatory domain responded only to Ca2+ binding. Subfragment 1, containing the regulatory domain, responded to both ATP and Ca2+, but its ATPase activity was Ca2+-insensitive. By contrast, the ATPase activity of HMM was Ca2+-sensitive. Increasing the ionic strength had a detrimental effect on Ca2+-sensitivity, and fluorescence studies on solubilized myosin were therefore of limited value. Myosin and its fragments from other molluscan species which were investigated produced similar changes to those of Pectan maximus.  相似文献   

6.
Mohan PM  Mukherjee S  Chary KV 《Proteins》2008,70(4):1147-1153
Characterization of near-native excited states of a protein provides insights into various biological functions such as co-operativity, protein-ligand, and protein-protein interactions. In the present study, we investigated the ruggedness of the native state of EhCaBP using nonlinear temperature dependence of backbone amide-proton chemical shifts. EhCaBP is a two-domain EF-hand calcium sensor protein consisting of two EF-hands in each domain and binds four Ca2+ ions. It has been observed that approximately 30% of the residues in the protein access alternative conformations. Theoretical modeling suggested that these low-energy excited states are within 2-3 kcal/mol from the native state. Further, it is interesting to note that the residues accessing alternative conformations are more dominated in the C-terminal domain compared with its N-terminal counterpart suggesting that the former is more rugged in its native state. These distinct characteristics of N- and C-terminal domains of a calcium sensor protein belonging to the super family of calmodulin would have implications for domain dependent Ca2+ signaling pathways.  相似文献   

7.
The calcium-induced conformational changes of the 108-amino acid residue proteins, cod III parvalbumin and oncomodulin, were compared using tryptophan as a sensitive spectroscopic probe. As native oncomodulin is devoid of tryptophan, site-specific mutagenesis was performed to create a mutant protein in which tryptophan was placed in the identical position (residue 102) as the single tryptophan residue in cod III parvalbumin. The results showed that in the region probed by tryptophan-102, cod III parvalbumin experienced significantly greater changes in conformation upon decalcification compared to the oncomodulin mutant, F102W. Addition of 1 eq of Ca2+ produced greater than 90% of the total fluorescence response in F102W, while in cod III parvalbumin, only 74% of the total was observed. Cod III parvalbumin displayed a negligible response upon Mg2+ addition. In contrast, F102W did respond to Mg2+, but the response was considerably less when compared to Ca2+ addition. Time-resolved fluorescence showed that the tryptophan in both proteins existed in at least two conformational states in the presence of Ca2+ and at least three conformational states in its absence. Comparison with quantum yield measurements indicated that the local electronic environment of the tryptophan was significantly different in the two proteins. Collectively, these results demonstrate that both cod III parvalbumin and oncomodulin undergo Ca2(+)-specific conformational changes. However, oncomodulin is distinct from cod III parvalbumin in terms of the electronic environment of the hydrophobic core, the magnitude of the Ca2(+)-induced conformational changes, and the number of calcium ions required to modulate the major conformational changes.  相似文献   

8.
Unlike wild type recoverin with only two (the second and the third) functioning Ca(2+)-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca(2+)-binding site. This site was reconstructed from the fourth potential Ca(2+)-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca(2+)-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild type recoverin.  相似文献   

9.
Li S  Yang W  Maniccia AW  Barrow D  Tjong H  Zhou HX  Yang JJ 《The FEBS journal》2008,275(20):5048-5061
Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.  相似文献   

10.
1. From the intrinsic fluorescence spectral properties and fluorescence quenching experiments done with acrylamide and iodide, using native sarcoplasmic reticulum vesicles, purified ATPase and ATPase solubilized with 1% Triton X-100, it is deduced that practically all the fluorescent tryptophanyl residues of this protein belong to a single population showing similar hydrophobic microenvironments. 2. Both acrylamide and iodide seem to be able to penetrate through the sarcoplasmic reticulum membrane. 3. The intrinsic fluorescence of the Ca2+-ATPase due to tryptophan residues probably buried inside the membrane is used as a tool to follow thermotropic changes in membrane fluidity of reconstituted systems.  相似文献   

11.
  • 1.1. As reported previously (Hopper and Robinson, 1990; Int. J. Biochem. 22, 1165–1170) the sea urchin extraembryonic coat protein hyalin undergoes a Ca2+-induced self-association into an insoluble gel (gelation) in the presence of Mg2+ and/or NaCl.
  • 2.2. A 275 kDa peptide fragment, generated by limited tryptic digestion of hyalin, binds Ca2++ but does not undergo gelation in the presence of Ca2+, Mg2+ and NaCl.
  • 3.3. Comparisons between the capacities of hyalin and the 275 kDa peptide fragment to bind Ca2+ indicate that the latter binds 88% less Ca2+ than hyalin.
  • 4.4. However, the presence of Ca2+ alone, at a concentration of 5 mM, protects the 275 kDa peptide fragment from further digestion by trypsin mimicking the effect of this cation in protecting hyalin.
  • 5.5. Gel exclusion Chromatographie analyses of the 275 kDa peptide fragment, both in the presence and absence of 5 mM Ca2+, indicate that this cation does induce self-association of the fragment.
  • 6.6. These results provide information on the organization of the functional domains on hyalin which are required for gel formation.
  相似文献   

12.
A family of Ca(2+)-binding proteins (CaBPs) was shown to bind to the inositol 1,4,5-trisphosphate receptor (InsP(3)R) Ca(2+) release channel and gate it in the absence of InsP(3), establishing them as protein ligands (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). However, the neuronally restricted expression of CaBP and its inhibition of InsP(3)R-mediated Ca(2+) signaling when overexpressed (Kasri, N. N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J., Holmes, A. B., Berridge, M. J., and Roderick, H. L. (2004) EMBO J. 23, 312-321; Haynes, L. P., Tepikin, A. V., and Burgoyne, R. D. (2004) J. Biol. Chem. 279, 547-555) have raised questions regarding the functional implications of this regulation. We have discovered the Ca(2+)-binding protein CIB1 (calmyrin) as a ubiquitously expressed ligand of the InsP(3)R. CIB1 binds to all mammalian InsP(3)R isoforms in a Ca(2+)-sensitive manner dependent on its two functional EF-hands and activates InsP(3)R channel gating in the absence of InsP(3). In contrast, overexpression of CIB1 or CaBP1 attenuated InsP(3)R-dependent Ca(2+) signaling, and in vitro pre-exposure to CIB1 reduced the number of channels available for subsequent stimulation by InsP(3). These results establish CIB1 as a ubiquitously expressed activating and inhibiting protein ligand of the InsP(3)R.  相似文献   

13.
A 9000-Mr Ca2+-binding protein was isolated from rat placenta and purified to homogeneity by h.p.l.c. procedures. The complete amino acid sequence was established for the 78-residue placental protein. A sequence analysis of a minor component of the rat intestinal Ca2+-binding protein (residues 4-78) and a tryptic peptide (residues 55-74), both purified by h.p.l.c., showed both proteins to be identical. Thus this placental 9000-Mr Ca2+-binding protein is the same gene product as the intestinal Ca2+-binding protein whose synthesis is dependent on vitamin D.  相似文献   

14.
15.
The integrated rate equation for reactions with stoichiometry A----P + Q is: e0t = -Cf . ln(1-delta P/A0) + C1 delta P + 1/2C2(delta P)2 where the coefficients C are linear or quadratic functions of the kinetic constants and the initial substrate and product concentrations. I have used the 21 progress curves described in the accompanying paper [Cox & Boeker (1987) Biochem. J. 245, 59-65] to develop computer-based analytical and statistical techniques for extracting kinetic constants by fitting this equation. The coefficients C were calculated by an unweighted non-linear regression: first approximations were obtained from a multiple regression of t on delta P and were refined by the Gauss-Newton method. The procedure converged in six iterations or less. The bias in the coefficients C was estimated by four methods and did not appear to be significant. The residuals in the progress curves appear to be normally distributed and do not correlate with the amount of product produced. Variances for Cf, C1 and C2 were estimated by four resampling procedures, which gave essentially identical results, and by matrix inversion, which came close to the others. The reliability of C2 can also be estimated by using an analysis-of-variance method that does not require resampling. The final kinetic constants were calculated by standard multiple regression, weighting each coefficient according to its variance. The weighted residuals from this procedure were normally distributed.  相似文献   

16.
The interaction of the carbocyanine dye Stains-all with the Ca2+-binding proteins calmodulin, troponin C, and parvalbumin has been monitored by means of absorption spectra and CD. In the absence of Ca2+, complexes with Stains-all of all three proteins exhibit at high dye: protein mole ratios an intense J absorption band at 600–650 nm, which is associated with a characteristic CD spectrum. In the cases of calmodulin and troponin C, the J-band is progressively lost as the dye: protein ratio decreases and is replaced by bands of the γ and β types at 450–550 nm, which likewise give rise to characteristic CD spectra. For parvalbumin, only the J-band is observed; its intensity is undiminished at the lowest dye: protein ratios examined. In the presence of excess Ca2+ the J-band is lost for all three proteins. For calmodulin and troponin C it is replaced by σ- and β-bands; in the case of parvalbumin the bound dye is released. A tentative model has been proposed to account for these observations.  相似文献   

17.
Photoreactive azido ruthenium (AzRu) has been recently shown to specifically interact with Ca(2+)-binding proteins and to strongly inhibit their Ca(2+)-dependent activities. Upon UV irradiation, AzRu can bind covalently to such proteins. In this study, AzRu was used to localize and characterize Ca(2+)-binding sites in the voltage-dependent anion channel (VDAC). AzRu decreased the conductance of VDAC reconstituted into a bilayer while Ca(2+), in the presence of 1M NaCl, but not Mg(2+), prevented this effect. AzRu had no effect on mutated E72Q- or E202Q-VDAC1 conductance, and [(103)Ru]AzRu labeled native but not E72Q-VDAC1, suggesting that these residues are required for AzRu interaction with the VDAC Ca(2+)-binding site(s). AzRu protected against apoptosis induced by over-expression of native but not E72Q- or E202Q- murine VDAC1 in T-REx-293 cells depleted of endogenous hVDAC1. Chymotrypsin and trypsin digestion of AzRu-labeled VDAC followed by MALDI-TOF analysis revealed two AzRu-bound peptides corresponding to E72- and E202-containing sequences. These results suggest that the VDAC Ca(2+)-binding site includes E72 and E202, located, according to a proposed VDAC1 topology model, on two distinct cytosolic loops. Furthermore, AzRu protection against apoptosis involves interaction with these residues. Photoreactive AzRu represents an important tool for identifying novel Ca(2+)-binding proteins and localizing their Ca(2+)-binding sites.  相似文献   

18.
Unlike wild type recoverin with only two (the second and the third) functioning Ca+2-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca+2-binding site. This site was reconstructed from the fourth potential Ca+2-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca+2-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild-type recoverin. For communication II, see [1].  相似文献   

19.
The molecule of photoreceptor Ca(2+)-binding protein recoverin contains four potential Ca(2+)-binding sites of the EF-hand type, but only two of them (the second and the third) can actually bind calcium ions. We studied the interaction of Ca2+ with recoverin and its mutant forms containing point amino acid substitutions at the working Ca(2+)-binding sites by measuring the intrinsic protein fluorescence and found that the substitution of Gln for Glu residues chelating Ca2+ in one (the second or the third) or simultaneously in both (the second and the third) Ca(2+)-binding sites changes the affinity of the protein to Ca2+ ions in different ways. The Gln for Glu121 substitution in the third site and the simultaneous Gln substitutions in the second (for Glu85) and in the third (for Glu121) sites result in the complete loss of the capability of recoverin for a strong binding of Ca(2+)-ions. On the other hand, the Gln for Glu85 substitution only in the second site moderately affects its affinity to the cation. Hence, we assumed that recoverin successively binds Ca(2+)-ions: the second site is filled with the cation only after the third site has been filled. The binding constants for the third and the second Ca(2+)-binding sites of recoverin determined by spectrofluorimetric titration are 3.7 x 10(6) and 3.1 x 10(5) M-1, respectively.  相似文献   

20.
Here we have identified and characterized a novel mitochondrial Ca2+-binding protein, mitocalcin. Western blot analysis demonstrated that mitocalcin was widely expressed in mouse tissues. The expression in brain was increased during post-natal to adult development. Further analyses were carried out in newly established neural cell lines. The protein was expressed specifically in neurons but not in glial cells. Double-labeling studies revealed that mitocalcin was colocalized with mitochondria in neurons differentiated from 2Y-3t cells. In addition, mitocalcin was enriched in the mitochondrial fraction purified from the cells. Immunohistochemical studies on mouse cerebellum revealed that the expression pattern of mitocalcin in glomeruli of the internal granular and molecular layers was well overlapped by the distribution pattern of mitochondria. Immunogold electron microscopy showed that mitocalcin was associated with mitochondrial inner membrane. Overexpression of mitocalcin in 2Y-3t cells resulted in neurite extension. Inhibition of the expression in 2Y-3t cells caused suppression of neurite outgrowth and then cell death. These findings suggest that mitocalcin may play roles in neuronal differentiation and function through the control of mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号