首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To take advantage of the potential quantitative benefits offered by tandem mass spectrometry, we have modified the method in which tandem mass spectrum data are acquired in 'shotgun' proteomic analyses. The proposed method is not data dependent and is based on the sequential isolation and fragmentation of precursor windows (of 10 m/z) within the ion trap until a desired mass range has been covered. We compared the quantitative figures of merit for this method to those for existing strategies by performing an analysis of the soluble fraction of whole-cell lysates from yeast metabolically labeled in vivo with (15)N. To automate this analysis, we modified software (RelEx) previously written in the Yates lab to generate chromatograms directly from tandem mass spectra. These chromatograms showed improvements in signal-to-noise ratio of approximately three- to fivefold over corresponding chromatograms generated from mass spectrometry scans. In addition, to demonstrate the utility of the data-independent acquisition strategy coupled with chromatogram reconstruction from tandem mass spectra, we measured protein expression levels in two developmental stages of Caenorhabditis elegans.  相似文献   

2.
The accurate mass values of all immonium, y(1), y(2), a(2), and b(2) ions of tryptic peptides composed of the 20 standard amino acids were calculated. The differences between adjacent masses in this data set are greater than 10 mDa for more than 80% of the values. Using this mass list, the majority of low mass ions in quadrupole-time of flight tandem mass spectra of peptides from tryptic digests and from an elastase digest could be assigned. Besides the a(2)/b(2) ions, which carry residues 1-2 from the N-terminus, a variety of internal dipeptide b ions were regularly observed. In case internal proline was present, corresponding dipeptide b ions carrying proline at the N-terminal position occurred. By assigning the dipeptide b ions on the basis of their accurate mass, bidirectional or unidirectional sequence information was obtained, which is localized to the peptide N-terminus (a(2)/b(2) ions) or not localized (internal b ions). Identification of the y(1) and y(2) ions by their accurate mass provides unidirectional sequence information localized to the peptide C-terminus. It is shown that this patchwork-type sequence information extractable from accurate mass data of low-mass ions is highly efficient for protein identification.  相似文献   

3.
De novo sequencing is an important task in proteomics to identify novel peptide sequences. Traditionally, only one MS/MS spectrum is used for the sequencing of a peptide; however, the use of multiple spectra of the same peptide with different types of fragmentation has the potential to significantly increase the accuracy and practicality of de novo sequencing. Research into the use of multiple spectra is in a nascent stage. We propose a general framework to combine the two different types of MS/MS data. Experiments demonstrate that our method significantly improves the de novo sequencing of existing software.  相似文献   

4.
Mass spectrometry, the core technology in the field of proteomics, promises to enable scientists to identify and quantify the entire complement of proteins in a complex biological sample. Currently, the primary bottleneck in this type of experiment is computational. Existing algorithms for interpreting mass spectra are slow and fail to identify a large proportion of the given spectra. We describe a database search program called Crux that reimplements and extends the widely used database search program Sequest. For speed, Crux uses a peptide indexing scheme to rapidly retrieve candidate peptides for a given spectrum. For each peptide in the target database, Crux generates shuffled decoy peptides on the fly, providing a good null model and, hence, accurate false discovery rate estimates. Crux also implements two recently described postprocessing methods: a p value calculation based upon fitting a Weibull distribution to the observed scores, and a semisupervised method that learns to discriminate between target and decoy matches. Both methods significantly improve the overall rate of peptide identification. Crux is implemented in C and is distributed with source code freely to noncommercial users.  相似文献   

5.
Database search tools identify peptides by matching tandem mass spectra against a protein database. We study an alternative approach when all plausible de novo interpretations of a spectrum (spectral dictionary) are generated and then quickly matched against the database. We present a new MS-Dictionary algorithm for efficiently generating spectral dictionaries and demonstrate that MS-Dictionary can identify spectra that are missed in the database search. We argue that MS-Dictionary enables proteogenomics searches in six-frame translation of genomic sequences that may be prohibitively time-consuming for existing database search approaches. We show that such searches allow one to correct sequencing errors and find programmed frameshifts.  相似文献   

6.
A computer program has been developed that reconstructs partial or total amino acid sequences of proteins from the partial N-terminal sequences of selected peptides derived from specific cleavage of the protein by proteolytic and/or chemical methods.  相似文献   

7.
Shotgun proteomics yields tandem mass spectra of peptides that can be identified by database search algorithms. When only a few observed peptides suggest the presence of a protein, establishing the accuracy of the peptide identifications is necessary for accepting or rejecting the protein identification. In this protocol, we describe the properties of peptide identifications that can differentiate legitimately identified peptides from spurious ones. The chemistry of fragmentation, as embodied in the 'mobile proton' and 'pathways in competition' models, informs the process of confirming or rejecting each spectral match. Examples of ion-trap and tandem time-of-flight (TOF/TOF) mass spectra illustrate these principles of fragmentation.  相似文献   

8.
TANDEM: matching proteins with tandem mass spectra   总被引:15,自引:0,他引:15  
SUMMARY: Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. AVAILABILITY: The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.  相似文献   

9.
Computational analysis of mass spectra remains the bottleneck in many proteomics experiments. SEQUEST was one of the earliest software packages to identify peptides from mass spectra by searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the search, but the demand for ever-faster peptide identification software continues to grow. Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization strategies detailed here employ a combination of algorithmic and software engineering techniques to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For example, on a single Xeon CPU, Tide searches 10,000 spectra against a tryptic database of 27,499 Caenorhabditis elegans proteins at a rate of 1550 spectra per second, which compares favorably with a rate of 8.8 spectra per second for a recent version of SEQUEST with index running on the same hardware.  相似文献   

10.
The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18-34% more protein identifications than the current state of the art approaches.  相似文献   

11.
MOTIVATION: A powerful proteomics methodology couples high-performance liquid chromatography (HPLC) with tandem mass spectrometry and database-search software, such as SEQUEST. Such a set-up, however, produces a large number of spectra, many of which are of too poor quality to be useful. Hence a filter that eliminates poor spectra before the database search can significantly improve throughput and robustness. Moreover, spectra judged to be of high quality, but that cannot be identified by database search, are prime candidates for still more computationally intensive methods, such as de novo sequencing or wider database searches including post-translational modifications. RESULTS: We report on two different approaches to assessing spectral quality prior to identification: binary classification, which predicts whether or not SEQUEST will be able to make an identification, and statistical regression, which predicts a more universal quality metric involving the number of b- and y-ion peaks. The best of our binary classifiers can eliminate over 75% of the unidentifiable spectra while losing only 10% of the identifiable spectra. Statistical regression can pick out spectra of modified peptides that can be identified by a de novo program but not by SEQUEST. In a section of independent interest, we discuss intensity normalization of mass spectra.  相似文献   

12.
Proteomics is the study of proteins, their time- and location-dependent expression profiles, as well as their modifications and interactions. Mass spectrometry is useful to investigate many of the questions asked in proteomics. Database search methods are typically employed to identify proteins from complex mixtures. However, databases are not often available or, despite their availability, some sequences are not readily found therein. To overcome this problem, de novo sequencing can be used to directly assign a peptide sequence to a tandem mass spectrometry spectrum. Many algorithms have been proposed for de novo sequencing and a selection of them are detailed in this article. Although a standard accuracy measure has not been agreed upon in the field, relative algorithm performance is discussed. The current state of the de novo sequencing is assessed thereafter and, finally, examples are used to construct possible future perspectives of the field.  相似文献   

13.
Proteomics is the study of proteins, their time- and location-dependent expression profiles, as well as their modifications and interactions. Mass spectrometry is useful to investigate many of the questions asked in proteomics. Database search methods are typically employed to identify proteins from complex mixtures. However, databases are not often available or, despite their availability, some sequences are not readily found therein. To overcome this problem, de novo sequencing can be used to directly assign a peptide sequence to a tandem mass spectrometry spectrum. Many algorithms have been proposed for de novo sequencing and a selection of them are detailed in this article. Although a standard accuracy measure has not been agreed upon in the field, relative algorithm performance is discussed. The current state of the de novo sequencing is assessed thereafter and, finally, examples are used to construct possible future perspectives of the field.  相似文献   

14.
A novel ProteinChip-interfaced tandem mass spectrometer was employed to identify collagen binding proteins from biosurfactant produced by Lactobacillus fermentum RC-14. On-chip tryptic digestion of the captured collagen binding proteins resulted in rapid sequence identification of five novel tryptic peptide sequences via collision-induced dissociation tandem mass spectrometry.  相似文献   

15.
De novo peptide sequencing via tandem mass spectrometry.   总被引:10,自引:0,他引:10  
Peptide sequencing via tandem mass spectrometry (MS/MS) is one of the most powerful tools in proteomics for identifying proteins. Because complete genome sequences are accumulating rapidly, the recent trend in interpretation of MS/MS spectra has been database search. However, de novo MS/MS spectral interpretation remains an open problem typically involving manual interpretation by expert mass spectrometrists. We have developed a new algorithm, SHERENGA, for de novo interpretation that automatically learns fragment ion types and intensity thresholds from a collection of test spectra generated from any type of mass spectrometer. The test data are used to construct optimal path scoring in the graph representations of MS/MS spectra. A ranked list of high scoring paths corresponds to potential peptide sequences. SHERENGA is most useful for interpreting sequences of peptides resulting from unknown proteins and for validating the results of database search algorithms in fully automated, high-throughput peptide sequencing.  相似文献   

16.
Peptide sequencing using tandem mass spectrometry data is an important and challenging problem in proteomics. We address the problem of peptide sequencing for multi-charge spectra. Most peptide sequencing algorithms currently consider only charge one or two ions even for higher-charge spectra. We give a characterization of multi-charge spectra by generalizing existing models. Using our models, we analyzed spectra from Global Proteome Machine (GPM) [Craig R, Cortens JP, Beavis RC, J Proteome Res 3:1234-1242, 2004.] (with charges 1-5), Institute for Systems Biology (ISB) [Keller A, Purvine S, Nesvizhskii AI, Stolyar S, Goodlett DR, Kolker E, OMICS 6:207-212, 2002.] and Orbitrap (both with charges 1-3). Our analysis for the GPM dataset shows that higher charge peaks contribute significantly to prediction of the complete peptide. They also help to explain why existing algorithms do not perform well on multi-charge spectra. Based on these analyses, we claim that peptide sequencing algorithms can achieve higher sensitivity results if they also consider higher charge ions. We verify this claim by proposing a de novo sequencing algorithm called the greedy best strong tag (GBST) algorithm that is simple but considers higher charge ions based on our new model. Evaluation on multi-charge spectra shows that our simple GBST algorithm outperforms Lutefisk and PepNovo, especially for the GPM spectra of charge three or more.  相似文献   

17.
Tandem mass spectrometry (MS/MS) has emerged as a cornerstone of proteomics owing in part to robust spectral interpretation algorithms. Widely used algorithms do not fully exploit the intensity patterns present in mass spectra. Here, we demonstrate that intensity pattern modeling improves peptide and protein identification from MS/MS spectra. We modeled fragment ion intensities using a machine-learning approach that estimates the likelihood of observed intensities given peptide and fragment attributes. From 1,000,000 spectra, we chose 27,000 with high-quality, nonredundant matches as training data. Using the same 27,000 spectra, intensity was similarly modeled with mismatched peptides. We used these two probabilistic models to compute the relative likelihood of an observed spectrum given that a candidate peptide is matched or mismatched. We used a 'decoy' proteome approach to estimate incorrect match frequency, and demonstrated that an intensity-based method reduces peptide identification error by 50-96% without any loss in sensitivity.  相似文献   

18.
Glycans are molecules made from simple sugars that form complex tree structures. Glycans constitute one of the most important protein modifications and identification of glycans remains a pressing problem in biology. Unfortunately, the structure of glycans is hard to predict from the genome sequence of an organism. In this paper, we consider the problem of deriving the topology of a glycan solely from tandem mass spectrometry (MS) data. We study, how to generate glycan tree candidates that sufficiently match the sample mass spectrum, avoiding the combinatorial explosion of glycan structures. Unfortunately, the resulting problem is known to be computationally hard. We present an efficient exact algorithm for this problem based on fixed-parameter algorithmics that can process a spectrum in a matter of seconds. We also report some preliminary results of our method on experimental data, combining it with a preliminary candidate evaluation scheme. We show that our approach is fast in applications, and that we can reach very well de novo identification results. Finally, we show how to count the number of glycan topologies for a fixed size or a fixed mass. We generalize this result to count the number of (labeled) trees with bounded out degree, improving on results obtained using Pólya's enumeration theorem.  相似文献   

19.
The SwePep database is designed for endogenous peptides and mass spectrometry. It contains information about the peptides such as mass, pl, precursor protein and potential post-translational modifications. Here, we have improved and extended the SwePep database with tandem mass spectra, by adding a locally curated version of the global proteome machine database (GPMDB). In peptidomic experiment practice, many peptide sequences contain multiple tandem mass spectra with different quality. The new tandem mass spectra database in SwePep enables validation of low quality spectra using high quality tandem mass spectra. The validation is performed by comparing the fragmentation patterns of the two spectra using algorithms for calculating the correlation coefficient between the spectra. The present study is the first step in developing a tandem spectrum database for endogenous peptides that can be used for spectrum-to-spectrum identifications instead of peptide identifications using traditional protein sequence database searches.  相似文献   

20.
There are many computer programs that can match tandem mass spectra of peptides to database-derived sequences; however, situations can arise where mass spectral data cannot be correlated with any database sequence. In such cases, sequences can be automatically deduced de novo, without recourse to sequence databases, and the resulting peptide sequences can be used to perform homologous nonexact searches of sequence databases. This article describes details on how to implement both a de novo sequencing program called “Lutefisk,” and a version of FASTA that has been modified to account for sequence ambiguities inherent in tandem mass spectrometry data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号