首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the sectioning effect of the two-photon fluorescence microscope, we studied the behavior of phospholipid giant unilamellar vesicles (GUVs) composed of pure diacylphosphatidylcholine phospholipids during the gel-to-liquid crystalline phase transition. We used the well-characterized excitation generalized polarization function (GP(ex)) of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN), which is sensitive to the changes in water content in the lipid vesicles, to monitor the phase transition in the GUVs. Even though the vesicles do not show temperature hysteresis at the main phase transition, we observed different behaviors of the vesicle shape, depending on how the GUV sample reaches the main phase transition. During the cooling cycles, we observed an increase in the vesicle diameter at the phase transition ( approximately 0.5-1%), followed by a decrease in the diameter when the vesicle reached the gel phase. During the heating cycles and close to the phase transition temperature, a surprising behavior is observed, showing a sequence of different vesicle shapes as follows: spherical-polygonal-ellipsoidal. We attribute these changes to the effect of lipid domain coexistence on the macroscopic structure of the GUVs. The "shape hysteresis" in the GUVs is reversible and largely independent of the temperature scan rate. In the presence of 30 mol% of cholesterol the events observed at the phase transition in the GUVs formed by pure phospholipids were absent.  相似文献   

2.
(1) When α-tocopherol was included in multibilayer vesicles of dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine it induced a broadening of the main transition and a displacement of this transition to lower temperatures, as seen by differential scanning calorimetry. This effect was quantitatively more important in the samples of distearoylphosphatidylcholine than in those of the other phosphatidylcholines. (2) α-Tocopherol when present in equimolar mixtures of dimyristoylphosphatidylcholine and diastearoylphosphatidylcholine, which show monotectic behaviour, preferentially partitions in the most fluid phase. (3) The effect of α-tocopherol on the phase transition of dilauroylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine is qualitatively different of that observed on phosphatidylcholines, and several peaks are observed in the calorimetric profile, probably indicating the formation of separated phases with different contents in α-tocopherol. The effect was more apparent in dipalmitoylphosphatidylethanolamine than in dilauroylphosphatidylethanolamine. (4) The inclusion of α-tocopherol in equimolar mixtures of dilauroylphosphatidylethanolamine and dipalmitoylphosphatidylcholine, which show cocrystallization, only produced a broadening of the phase transition and a shift to lower temperatures. However, in the case of equimolar mixtures of dipalmitoylphosphatidylcholine which also show cocrystallization, the effect was to cause lateral phase separation with the formation of different mixtures of phospholipids and α-tocopherol. (5) α-Tocopherol was also included in equimolar mixtures of phosphatidylethanolamine and phosphatidylcholine showing monotectic behaviour, and in this case α-tocopherol preferentially partitioned in the most fluid phase, independently of whether this was composed mainly of phosphatidylcholine or of phosphatidylethanolamine.  相似文献   

3.
The excess heat capacity functions (ΔCp) associated with the main phase transition of large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs) are very different. Two explanations are possible. First, the difference in vesicle size (curvature) results in different gel-fluid interactions in the membrane; those interactions have a large effect on the cooperativity of the phase transition. Second, there is communication between the bilayers in an MLV when they undergo the gel-fluid transition; this communication results in thermodynamic coupling of the phase transitions of the bilayers in the MLV and, consequently, in an apparent increase in the cooperativity of the transition. To test these hypotheses, differential scanning calorimetry was performed on giant unilamellar vesicles (GUVs) of pure dipalmitoylphosphatidylcholine. The ΔCp curve of GUVs was found to resemble that of the much smaller LUVs. The transition in GUVs and LUVs is much broader (half-width ∼1.5°C) than in MLVs (∼0.1°C). This similarity in GUVs and LUVs indicates that their size has little effect on gel-fluid interactions in the phase transition. The result suggests that coupling between the transitions in the bilayers of an MLV is responsible for their apparent higher cooperativity in melting.  相似文献   

4.
The effect of phospholipid structure on the interaction between small peptides and phospholipid membranes has been studied by high-sensitivity differential scanning calorimetry. The peptides used, N-Boc-beta-Ala-Trp-Met-Arg-Phe-NH2 and N-Boc-beta-Ala-Trp-Met-Lys-Phe-NH2, are basic analogs of the hormone pentagastrin. These peptides split the gel-to-liquid crystalline phase transition of synthetic phosphatidylcholines into two components. For dimyristoyl (DMPC), dipalmitoyl (DPPC) and 1-stearoyl-2-oleoyl (SOPC) phosphatidylcholines, one component remains at the temperature corresponding to that of pure lipid and the other one is shifted towards higher temperatures. With increasing peptide concentration there is a gradual increase in the enthalpy of the high-temperature component at the expense of the low-temperature one, and there is also an increase in the total enthalpy of the transition. A mixture of the peptide with distearoylphosphatidylcholine (DSPC) behaves differently, with the transition occurring at a temperature below that of the pure lipid increasing with peptide concentration. The susceptibility of various phosphatidylcholines to perturbation by the peptides increases in the order DMPC greater than SOPC greater than DPPC greater than DSPC. The effect of these peptides on the phase transitions of acidic phosphatidylglycerols is generally greater than with the corresponding phosphatidylcholines, but the dependence on the length of lipid hydrocarbon chains is similar. Perturbation of the thermotropic phase transition is strongest for dimyristoylphosphatidylglycerol, followed by the dipalmitoyl and the distearoyl analogs. The effect of the peptides on the phase transition of dimyristoylphosphatidylserine is significantly smaller compared to that observed with dimyristoylphosphatidylglycerol and it is further reduced for dimyristoylphosphatidic acid. The phase transition of this latter lipid remains virtually unchanged, even in the presence of high concentrations of the peptide. Similar resistance to the perturbation of the phase transitions by the peptides is observed for synthetic phosphatidylethanolamine. The different susceptibility of various phospholipids to perturbation by the peptides is suggested to be related to different degrees of intermolecular interaction between phospholipid molecules, and particularly to different abilities of phospholipids to form intermolecular hydrogen bonding.  相似文献   

5.
The effect of substances of different nature on the thermodynamic characteristics of dimyristoylphosphatidylcholine (DMPC) phase transition by the differential scanning microcalorimetry has been studied. The substances disposed in hydrophobic part of membrane--alpha-tocopherol, ubiquinone Q10, ionol and vitamin K3 cause the decrease of enthalpy and cooperativity of phase transition. The substances which have the side hydrocarbon chain (tocopherol and ubiquinone Q10) compared with ones without it (ionol and vitamin K3) and reduced quinones (Q10 and vitamin K3) compared with the oxidized ones have stronger influence on the enthalpy and cooperativity of transition. The inclusion of the local anesthetic dicaine disposed mainly in the zone of polar heads of phospholipids into DMPC membranes decreases the temperature of phase transition considerably and practically does not change the cooperativity. A possibility to use the method of differential scanning microcalorimetry to estimate the localization of membrane tropic substances within lipid bilayer is under discussion.  相似文献   

6.
A phase diagram for 1,2-distearoylphosphatidylethanolamine (DSPE) dispersed in glycerol/water mixtures was constructed using data obtained from differential scanning calorimetry and time-resolved X-ray diffraction measurements. The phase sequence seen on heating the lipid remains the same for samples containing up to 70 wt% glycerol. Depending on the hydration conditions, the samples are either in a metastable lamellar gel (L beta) or one or other of two possible sub-gel phases (Lc and Lc') at low temperatures. These phases convert first to a lamellar liquid crystalline (L alpha) and then to an inverted hexagonal (HII) phase on heating. On cooling, the samples revert first to the L alpha and then to the L beta phase. Although the phase sequence is preserved, marked changes are seen in the transition temperatures between the different phases. The temperature of the transition between the L alpha and the HII phases decreases strongly with increasing glycerol concentration while that of the Lc and Lc' phases to L alpha, and to a lesser extent that of the L beta to L alpha transition, increases. Substantial changes in phase behaviour are seen if the glycerol concentration is increased above 70 wt%. Under these conditions, the Lc and Lc' phases transform directly into the HII phase on heating (a similar direct transition from the L beta to the HII phase is seen above 80 wt% glycerol). An exothermic transition from the L beta phase to the Lc' phase is observed and there is also an increasing tendency for the samples to revert to the Lc or Lc' phases on storage. These changes in relative stability of the different phases are discussed in terms of a possible membrane Hofmeister effect and their relevance to the mode of action of cryoprotectants is explored.  相似文献   

7.
Gold nanorods, rod-shaped gold nanoparticles, have strong absorbance in the near-infrared region, and the absorbed light energy can be converted to heat, the so-called photothermal effect. The gold nanorods were coated with thermoresponsive polymers, which have different phase transition temperatures that were controlled by adding comonomers, N,N-dimethylacrylamide (DMAA) or acrylamide (AAm) to N-isopropylacrylamide (NIPAM). The phase transition temperatures of poly(NIPAM-DMAA) and poly(NIPAM-AAm)-coated gold nanorods were 38 and 41 °C, respectively, while polyNIPAM-coated gold nanorods showed phase transition at 34 °C. Irradiation of the coated gold nanorods using the near-infrared laser induced a decrease in their sizes due to a phase transition of the polymer layers. Poly(NIPAM-AAm)-coated gold nanorods stably circulated in the blood flow without a phase transition after intravenous injection. Irradiation of near-infrared light at a tumor after the injection resulted in the gold specifically accumulating in the tumor. This novel accumulation technique which combines a thermoresponsive polymer and the photothermal effect of the gold nanorods should be a powerful tool for targeted delivery in response to light irradiation.  相似文献   

8.
Electron paramagnetic resonance (EPR) and differential scanning calorimetry (I)SO have been used to study the effect on the phase transition of dimyristoylphosphatidylcholine membranes of incorporating various stearic acid spin labels (SASL's) that contain the bulky oxazolidine ring at various positions along the stearyl chain. SASL's lowered the phase transition temperature and decreased the size of the cooperative unit, with the effects stronger in the order of 9-> 12-> 5-> 16-SASL > stearic acid (no label). Incorporation of stearic acid without the spin label slightly increases the phase transition temperature. Incorporation of 9-SASL (3 mol% of lipid) decreased the transition temperature by 1.8C and the cooperative unit to 115 of that without the spin label, while the effect of 16-SASL was slight. The effect on transition enthalpy was small. It is concluded that the perturbing effect of placing a bulky group on the alkyl chain on phase transition is through inducing packing defects in the gel-phase.  相似文献   

9.
The phase transition kinetics and mechanism of formation of a lamellar-crystalline phase of dipalmitoylphosphatidylethanolamine (DPPE) dispersed in different concentrations of aqueous dimethyl sulfoxide (DMSO) during cooling have been examined by differential scanning calorimetry and synchrotron X-ray diffraction techniques. In dispersions containing mole fractions of DMSO (x<0.22), the phase transition sequence of the phospholipid is from lamellar liquid-crystal phase to lamellar-gel phase. Increasing the mole fraction of DMSO to 0.220.5 resulted in a direct transition from liquid-crystal phase to lamellar crystal phase with no detectable intermediate gel phase. A temperature versus DMSO concentration phase diagram was constructed based on calorimetric data with phase assignments made using synchrotron X-ray diffraction measurements. The non-isothermal formation kinetics of the lamellar crystal phase, which is expressed as the half time of the transformation process, was found to depend on DMSO concentration. The inducement of lamellar crystal phase in DPPE by DMSO is discussed in terms of the dehydration effect of DMSO and competitive molecular interactions between DMSO, water, and the phospholipid.  相似文献   

10.
When alpha-tocopherol was included in multibilayer vesicles of dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine it induced a broadening of the main transition and a displacement of this transition to lower temperatures, as seen by differential scanning calorimetry. This effect was quantitatively more important in the samples of distearoylphosphatidylcholine than in those of the other phosphatidylcholines. Alpha-Tocopherol when present in equimolar mixtures of dimyristoylphosphatidylcholine and diastearoylphosphatidylcholine, which show monotectic behaviour, preferentially partitions in the most fluid phase. The effect of alpha-tocopherol on the phase transition of dilauroylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine is qualitatively different of that observed on phosphatidylcholines, and several peaks are observed in the calorimetric profile, probably indicating the formation of separated phases with different contents in alpha-tocopherol. The effect was more apparent in dipalmitoylphosphatidylethanolamine than in dilauroylphosphatidylethanolamine. The inclusion of alpha-tocopherol in equimolar mixtures of dilauroylphosphatidylethanolamine and dipalmitoylphosphatidylcholine, which show cocrystallization, only produced a broadening of the phase transition and a shift to lower temperatures. However, in the case of equimolar mixtures of dipalmitoylphosphatidylcholine which also show cocrystallization, the effect was to cause lateral phase separation with the formation of different mixtures of phospholipids and alpha-tocopherol. Alpha-Tocopherol was also included in equimolar mixtures of phosphatidylethanolamine and phosphatidylcholine showing monotectic behaviour, and in this case alpha-tocopherol preferentially partitioned in the most fluid phase, independently of whether this was composed mainly of phosphatidylcholine or of phosphatidylethanolamine.  相似文献   

11.
P Smejtek  S Wang 《Biophysical journal》1991,59(5):1064-1073
Dipalmitoylphosphatidylcholine (DPPC) vesicles acquire negative surface charge on adsorption of negatively charged pentachlorophenolate (PCP-), and lipophilic ions tetraphenylborate (TPhB-), and dipicrylamine (DPA-). We have obtained (a) zeta-potential isotherms from the measurements of electrophoretic mobility of DPPC vesicles as a function of concentration of the adsorbing ions at different temperatures (25-42 degrees C), and (b) studied the effect of PCP- on gel-to-fluid phase transition by measuring the temperature dependence of zeta-potential at different PCP- concentrations. The zeta-potential isotherms of PCP- at 25, 32, and 34 degrees C correspond to adsorption to membrane in its gel phase. At 42 degrees C the zeta-potential isotherm corresponds to membrane in its fluid phase. These isotherms are well described by a Langmuir-Stern-Grahame adsorption model proposed by McLaughlin and Harary (1977. Biochemistry. 15:1941-1948). The zeta-potential isotherm at 37 degrees C does not follow the single-phase adsorption model. We have also observed anomalous adsorption isotherms for lipophilic ions TPhB- and DPA- at temperatures as low as 25 degrees C. These isotherms demonstrate a gel-to-fluid phase transition driven by ion adsorption to DPPC membrane during which the membrane changes from weakly to a strongly adsorbing state. The anomalous isotherm of PCP- and the temperature dependence of zeta-potential can be described by a two-phase model based on the combination of (a) Langmuir-Stern-Grahame model for each phase, (b) the coexistence of gel and fluid domains, and (c) depression of gel-to-fluid phase transition temperature by PCP-. Within the anomalous region the magnitude of zeta-potential rapidly increases concentration of adsorbing species, which was characterized in terms of a Esin-Markov coefficient. This effect can be exploited in membrane-based devices. Comments are also made on the possible effect of PCP, as an uncoupler, in energy transducing membranes.  相似文献   

12.
The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly.  相似文献   

13.
The effects of pressure and temperature on the decay kinetics of the M412 (M) intermediate in the photocycle of bacteriorhodopsin were studied to provide information about the phase transitions of the purple membrane lipids. The activation volume (delta V++) for the decay of M is expected to be different below and above a phase transition. However, no abrupt change in delta V++ was found from 3.5 degrees to 60 degrees C. But a sharp break was observed in a plot of the logarithm of the rate of M decay vs. pressure. Extrapolation of this break point to standard atmospheric pressure gives a temperature of -42 degrees C, which probably corresponds to the phase transition of the purple membrane lipids. This conclusion is supported by studies of the effect of pressure on the M kinetics of bacteriorhodopsin incorporated into dimyristoylphosphatidylcholine vesicles, whose phase transition has previously been characterized.  相似文献   

14.
The interaction of glucagon, human parathyroid hormone-(1-34)-peptide and salmon calcitonin with dimyristoylphosphatidylglycerol (DMPG) and with dimyristoylphosphatidylcholine (DMPC) was studied as a function of pH and temperature. The effect of lipid on the secondary structure of the peptide was assessed by circular dichroism and the effect of the peptide on the phase transition properties of the lipid was studied using differential scanning calorimetry. Some peptides interact more strongly with anionic than with zwitterionic phospholipids. This does not require an overall positive charge on the peptide. Increased thermal stability is observed in complexes formed between cationic peptides and anionic lipids. Particularly marked effects of glucagon and human parathyroid hormone-(1-34)-peptide on the phase transition properties of DMPG at pH 5 have been observed. The transition temperature is raised over 10 degrees C at a lipid/peptide molar ratio of less than 30:1 and the transition enthalpy is increased over 2-fold. These effects do not occur with any basic peptide and were not observed with metorphinamide, molluscan cardioexcitatory neuropeptide or myelin basic protein. The results demonstrate that certain peptides can affect the phase transition properties of lipids in a manner similar to divalent cations. The overall hydrophobicities of these peptides can be evaluated by their partitioning between aqueous and organic solvents. None of the above three peptide hormones partition into the organic phase. However, a closely related peptide, human calcitonin, does exhibit substantial partitioning into the organic phase. Nevertheless, human calcitonin has a weaker interaction with both DMPC and DMPG than does salmon calcitonin. The effects of human calcitonin on the phase transition of DMPC are qualitatively different from those of salmon calcitonin in that the human form more readily eliminates the pretransition but causes less change in the main transition. Like overall charge, overall hydrophobicity is not an overwhelming factor in determining the ability of peptides to interact with phospholipids but rather more specific interactions are required for strong complexes to form.  相似文献   

15.
Summary The effect of more than ninety lipid-soluble compounds on the phase transition behavior ofdl--dipalmitoyl lecithin bilayer has been examined by differential scanning calorimetry. The type of effect on the phase transition profile depends on the nature of the additive, whereas the extent of the effect depends on the concentration. The compounds examined include uncouplers, alkanols, fatty acids, detergents, organic solvents, ionophores, inorganic ions, and some commonly used spin-labelled and fluorescent membrane probes. A qualitatively distinct effect of several of these additives on the phase transition behavior of bilayer provides a method of determining the nature of the perturbation they induce in the bilayer organization. The observations are consistent with the hypothesis that the type of effect induced by an additive on the phase transition profile of the bilayer is related to the position of localization of the additive along the thickness of the bilayer. At least four different types of modified transition profiles that are related to changes in bilayer fluidity can be distinguished. These correspond to the localization of the additive in phosphorylcholine (type D), glycerol backbone (type B), C1–C8 methylene (type A), C9–C16 methylene (type C) region of the bilayer. A possible relationship between the type of phase transition profiles of modified liposomes and the physiological effects of drugs is also discussed.  相似文献   

16.
The effect of free fatty acids on the phase transition characteristics and fluidity of bilayers of dimyristoyl glycerophosphocholine were studied by pyrene eximer fluorescence and differential scanning calorimetry. High melting saturated fatty acids with chain lengths of 12–18 carbon atoms raise the phase transition temperature and enhance the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. Low melting unsaturated fatty acids lower the phase transition temperature and decrease the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. The effects of the very long chain fatty acids, arachidic (C 20) and behenic (C 22) appear to be similar to those of cholesterol in that they cause a broadening of the phase transition with a lowering of the transition enthalpy but have little effect on the temperature at which the phase transition occurs.  相似文献   

17.
The effects of bacteriorhodopsin analogues and the analogues of a bacteriorhodopsin mutant (D96N) on the lateral organization of lipids have been investigated with lipid species with a variety of acyl chain lengths. The analogues, obtained by regeneration of bacterioopsin or mutant opsin with 14-, 12-, 10-, or 8-fluororetinal, were reconstituted with 1,2-didodecanoyl-sn-glycero-3-phosphocholine, 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine, 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine. The phase behavior of the protein-lipid systems was investigated at different temperatures and different protein/lipid molar ratios by analyzing the fluorescence and phase properties of the 1-acyl-2-[8-(2-anthroyl)octanol]-sn-glycero-3-phosphocholine probe. The (8,10,12)-bacteriorhodopsins had a similar effect on the lipid phase transition to that induced by native bacteriorhodopsin: a rigidifying effect on the three shorter lipid species and a fluidifying effect on the longest-chain lipids used. The substitution of retinal with 14-fluororetinal resulted in much stronger effects of the protein on the lipids: a more pronounced up-shift of the lipid phase transition temperature, a rigidifying effect on all the lipids used, and an elongation of the distance over which the hydrophobic thickness of the lipid bilayer was perturbed by the protein. Evidence was provided that retinal contributed to the long-range protein-lipid interactions in bacteriorhodopsin-phosphatidylcholine vesicles. The extent of this contribution was dependent on the retinal structure in close vicinity to the Shiff base and on the compactness of the protein structure.  相似文献   

18.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel leads to liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar leads to hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel leads to liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the delta H values becomes 7.1 kcal X mol-1 as compared to 8.2 kcal X mol-1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (delta H = 3.1 kcal X mol-1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (-13.5 degrees C in the presence of 20,S-OH cholesterol). The delta H of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar leads to hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The delta H of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3 beta- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ratio, 1:1) monomolecular film exhibits a transition at approx. 103 A2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
(1) The interaction of tyrocidine with different lipids is studied in model membranes and the results are compared to the gramicinid-lipid interaction. (2) The tyrocidine-dielaidoylphosphatidylethanolamine interaction gives rise to a population of phospholipids with a lower gel to liquid-crystalline transition temperature and to an abolition of the bilayer to HII phase transition, resulting in a macroscopic organization with dynamic and structural properties different from those of the pure lipid. (3) Tyrocidine has a strong fluidizing effect on the acyl chains of phosphatidylcholines, manifested by a decrease in enthalpy of the main thermotropic transition. (4) No evidence of a gramicidin A'-like lipid-structure modulating activity was found. However, tyrocidine inhibits the formation by gramicidin of an HII phase in dioleoylphosphatidylcholine model membranes. Instead, a cubic type of lipid organization is observed. (5) Tyrocidine greatly perturbs the barrier properties of dioleoylphosphatidylcholine model membrane. (6) Gramicidin A' reverses the effect of tyrocidine on membrane permeability by forming a complex in the model membrane with an apparent 1:1 stoichiometry. (7) The results suggest that both peptide antibiotics, which are produced by Bacillus brevis ATC 8185 prior to sporulation, show antagonism in their effect on membrane structure similar to their effect on superhelical DNA (Bogh, A. and Ristow, H. (1986) Eur. J. Biochem. 160, 587-591. The possible underlying basic mechanism is indicated.  相似文献   

20.
Amphotericin B (AmB) is a polyene antibiotic widely used in the treatment of deep-seated fungal infections. The mode of action of AmB is directly related to the effect of the drug on the lipid phase of biomembranes. In the present work the effect of AmB on the properties of lipid bilayers formed with dipalmitoylphosphatidylcholine (DPPC) and the effect of the lipid phase on the molecular organisation of AmB were studied with application of spectrophotometry in the UV-Vis region. The absorption spectra of AmB in lipid membranes display a complex structure with hypsochromically and bathochromically shifted bands indicative of formation of molecular aggregates of the drug. Formation of molecular aggregates was analysed at different concentrations of the drug in the lipid phase in the range 0.05--5 mol% and at different temperatures in the range 5--55 degrees C. The aggregation level of AmB in the ordered phase of DPPC displayed a minimum corresponding to a concentration of 1 mol% with respect to the lipid. An increase in the aggregation level was observed in the temperature region corresponding to the main phase transition. The structure of molecular aggregates of AmB is analysed on the basis of spectroscopic effects in terms of the exciton splitting model. Analysis of the position of the absorption maximum of AmB in the lipid phase of DPPC in terms of the theory of solvatochromc effects makes it possible to ascribe the refractive indices n=1.40 and n=1.49 to the hydrophobic core of the membrane in the L(alpha) and the P(beta)' phase respectively. Analysis of the aggregation of AmB in the lipid phase in relation to the physical state of the membrane reveals that the temperature range of the main phase transition of a lipid cluster in the immediate vicinity of AmB depends on its concentration. The termination of the phase transition temperature, as read from the AmB aggregation, varies between 42 degrees C at 1 mol% AmB in DPPC and 49 degrees C at 5 mol% AmB in DPPC. The exciton splitting theory applied to the analysis of the spectroscopic data makes it possible to calculate the diameter of the AmB pore as 2.8 A in the gel phase and 3.6 A in the fluid phase of the DPPC membrane, on the assumption that the pore is formed by nine AmB molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号