首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Starch produced by plants is a stored form of energy and is an important dietary source of calories for humans and domestic animals. Disproportionating enzyme (D‐enzyme) catalyzes intramolecular and intermolecular transglycosylation reactions of α‐1, 4‐glucan. D‐enzyme is essential in starch metabolism in the potato. We present the crystal structures of potato D‐enzyme, including two different types of complex structures: a primary Michaelis complex (substrate binding mode) for 26‐meric cycloamylose (CA26) and a covalent intermediate for acarbose. Our study revealed that the acarbose and CA26 reactions catalyzed by potato D‐enzyme involve the formation of a covalent intermediate with the donor substrate. HPAEC of reaction substrates and products revealed the activity of the potato D‐enzyme on acarbose and CA26 as donor substrates. The structural and chromatography analyses provide insight into the mechanism of the coupling reaction of CA and glucose catalyzed by the potato D‐enzyme. The enzymatic reaction mechanism does not involve residual hydrolysis. This could be particularly useful in preventing unnecessary starch degradation leading to reduced crop productivity. Optimization of this mechanism would be important for improvements of starch storage and productivity in crops.  相似文献   

2.
The substrate specificity of carefully purified wheat germ acid phosphatase was examined and the Michaelis constants for substrates having widely varying leaving groups were determined at pH values 4.6, 8.0, and 9.2. The pH-dependent leaving group effects were consistent with the formation of a covalent phosphoryl histidine intermediate in the reaction process catalyzed by this enzyme. In addition, the enzyme was found to hydrolyze nitrophenyl esters of methyl-, chloromethyl-, and phenylphosphonic acids at rates comparable to those observed for phosphomonoester hydrolysis. The data are most simply interpreted on the basis of a nucleophilic displacement by an active-site histidine residue to form an intermediate N′-phosphonyl histidine species, followed by decomposition of this intermediate by nucleophilic attack by water, analogous to the decomposition process of the N′-phosphoryl enzyme species.  相似文献   

3.
AMP nucleosidase: kinetic mechanism and thermodynamics   总被引:1,自引:0,他引:1  
W E DeWolf  F A Emig  V L Schramm 《Biochemistry》1986,25(14):4132-4140
The kinetic mechanism of AMP nucleosidase (EC 3.2.2.4; AMP + H2O----adenine + ribose 5-phosphate) from Azotobacter vinelandii is rapid-equilibrium random by initial rate studies of the forward and reverse reactions in the presence of MgATP, the allosteric activator. Inactivation-protection studies have established the binding of adenine to AMP nucleosidase in the absence of ribose 5-phosphate. Product inhibition by adenine suggests a dead-end complex of enzyme, AMP, and adenine. Methanol does not act as a nucleophile to replace H2O in the reaction, and products do not exchange into substrate during AMP hydrolysis. Thus, the reactive complex has the properties of concerted hydrolysis by an enzyme-directed water molecule rather than by formation of a covalent intermediate with ribose 5-phosphate. The Vmax in the forward reaction (AMP hydrolysis) is 300-fold greater than that in the reverse reaction. The Keq for AMP hydrolysis has been experimentally determined to be 170 M and is in reasonable agreement with Keq values of 77 and 36 M calculated from Haldane relationships. The equilibrium for enzyme-bound substrate and products strongly favors the enzyme-product ternary complex ([enzyme-adenine ribose 5-phosphate]/[enzyme-AMP] = 480). The temperature dependence of the kinetic constants gave Arrhenius plots with a distinct break between 20 and 25 degrees C. Above 25 degrees C, AMP binding demonstrates a strong entropic effect consistent with increased order in the Michaelis complex. Below 20 degrees C, binding is tighter and the entropic component is lost, indicating distinct enzyme conformations above and below 25 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Richard JP  McCall DA  Heo CK  Toteva MM 《Biochemistry》2005,44(35):11872-11881
Substitution of the C2-OH group by C2-H at 4-nitrophenyl-beta-d-galactopyranoside to give 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside causes (1) a change in the rate-determining step for beta-galactosidase-catalyzed sugar hydrolysis from formation to breakdown of a covalent intermediate; (2) a 14 000-fold decrease in the second-order rate constant k(3)/K(d) for enzyme-catalyzed transfer of the beta-d-galactopyranosyl group from the substrate to form a covalent adduct to the enzyme; and (3) a larger 320 000-fold decrease in the first-order rate constant k(s) for hydrolysis of this covalent adduct. Only a small fraction (ca. 7%) of the 2-OH substituent effect is expressed in the ground-state Michaelis complex, so that the (apparent) strong interactions between the enzyme and 2-OH group that stabilize the transition state for beta-d-galactopyranosyl transfer only develop upon moving from the Michaelis complex to the transition state. Mg(2+) activates beta-galactosidase for cleavage of both 4-nitrophenyl-beta-d-galactopyranoside and 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside. This suggests that Mg(2+) activation does not involve interactions with the 2-OH group. The removal of Mg(2+) from beta-galactosidase causes a change in the rate-determining step for enzyme-catalyzed hydrolysis of 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside from breakdown to formation of the covalent intermediate. The observed 2-OH effect would require a very large (10-11 kcal/mol) stabilization of the transition state for beta-d-galactopyranosyl group transfer to water by interactions between beta-galactosidase and the neutral 2-OH group. We suggest that the apparent effect of the neutral substituent is more simply rationalized by ionization of the 2-OH to form a 2-O(-) anion, which provides effective electrostatic stabilization of the cationic transition state for glycoside cleavage at an active site of relatively low dielectric constant.  相似文献   

5.
Carboxypeptidase A-catalyzed hydrolysis of peptides and depsipeptides is competitively inhibited by N-(1-carboxy-5-t-butyloxycarbonylaminopentyl)-L-phenylalanine (Boc-CA-Phe, Ki = 1.3 microM) and the angiotensin converting enzyme inhibitor, N-(1-carboxy-5-carbobenzoxyaminopentyl)-glycyl-L-phenylalanine (Z-CA-Gly-Phe, Ki = 4.5 microM). The latter compound is actually a slow substrate of carboxypeptidase. Indirect observation of inhibitor binding by stopped-flow measurement of radiationless energy transfer between carboxypeptidase tryptophans and dansylated substrates reveals slow binding for both compounds. The visible absorption spectrum of the complex of cobalt(II)-substituted carboxypeptidase and Z-CA-Gly-Phe, which differs from the corresponding spectrum of the Boc-CA-Phe complex, is remarkable in its resemblance to the spectrum of the complex between Co(II)carboxypeptidase and a transient intermediate previously observed during hydrolysis of peptide substrates. The spectrum slowly changes to that of the free enzyme indicating hydrolysis. Chromatographic quantitation of substrate and products confirms that carboxypeptidase converts Z-CA-Gly-Phe to Z-CA-Gly and L-Phe with an apparent kcat of 0.02 s-1. Absorption spectroscopy indicates that the Z-CA-Gly-Phe-Co(II)carboxypeptidase spectrum is not that of bound products. Moreover, spectral titrations indicate that the products (both with spectral Ki values of about 3 mM), as well as D-Phe, compete for the same site on the enzyme.  相似文献   

6.
Amylomaltases are glycosyl hydrolases belonging to glycoside hydrolase family 77 that are capable of the synthesis of large cyclic glucans and the disproportionation of oligosaccharides. Using protein crystallography, we have generated a flip book movie of the amylomaltase catalytic cycle in atomic detail. The structures include a covalent glycosyl enzyme intermediate and a covalent intermediate in complex with an analogue of a co-substrate and show how the structures of both enzyme and substrate respond to the changes required by the catalytic cycle as it proceeds. Notably, the catalytic nucleophile changes conformation dramatically during the reaction. Also, Gln-256 on the 250s loop is involved in orienting the substrate in the +1 site. The absence of a suitable base in the covalent intermediate structure explains the low hydrolysis activity.  相似文献   

7.
Interactions of α-chymotrypsin with 2-coumaranone (I), 3,4-dihydrocoumarin (II), o-hydroxy-α-toluenesulfonic acid sultone (III), and β-o-hydroxyphenylethanesulfonic acid sultone (IV) were studied in the presence of 14% acetonitrile at pH 7.0 by means of the proflavin displacement technique and by inhibition of N-acetyl-l-tryptophan ethyl ester (ATrEE) hydrolysis. Under saturating conditions of either I, II, or III, an enzyme intermediate was shown to accumulate using either the proflavin displacement technique or the ATrEE activity assay. The intermediates have characteristics of covalent enzyme-substrate compounds and are believed to decompose simultaneously by two pathways, one to give free enzyme and hydrolyzed cyclic ester, and the other to give the original cyclic ester and free enzyme. With α-chymotrypsin and III the observed first-order rate constant for decomposition of the intermediate by the two pathways was 0.19 ± 0.04 min?1, while the rate constant for the hydrolytic pathway alone was 0.013 ± 0.0009 min?1. These results indicate that the covalent-like intermediate with this sultone is not only capable of reverting to starting cyclic ester but prefers this pathway over hydrolysis. Sultone IV was found to bind to enzyme; but in contrast to the behavior of esters I–III, the binding did not result in accumulation of a covalent-like intermediate.  相似文献   

8.
Serpins (serine protease inhibitors) inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into beta-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved mainly due to difficulties in measuring kinetic parameters of acylation, protease translocation, and deacylation steps. To address the problem, we applied a mathematical model developed on the basis of a suicide inhibition mechanism to the stopped-flow kinetics of fluorescence resonance energy transfer during complex formation between alpha(1)-antitrypsin, a prototype serpin, and proteases. Compared with the hydrolysis of a peptide substrate, acylation of the protease by alpha(1)-antitrypsin is facilitated, whereas deacylation of the acyl intermediate is strongly suppressed during the protease translocation. The results from nucleophile susceptibility of the acyl intermediate suggest strongly that the active site of the protease is already perturbed during translocation.  相似文献   

9.
The naturally occurring serine protease inhibitor, chymostatin, forms a hemiacetal adduct with the catalytic Ser195 residue of Streptomyces griseus protease A. Restrained parameter least-squares refinement of this complex to 1.8 A resolution has produced an R index of 0 X 123 for the 11,755 observed reflections. The refined distance of the carbonyl carbon atom of the aldehyde to O gamma of Ser195 is 1 X 62 A. Both the R and S configurations of the hemiacetal occur in equal populations, with the end result resembling the expected configuration for a covalent tetrahedral product intermediate of a true substrate. This study strengthens the concept that serine proteases stabilize a covalent, tetrahedrally co-ordinated species and elaborates those features of the enzyme responsible for this effect. We propose that a major driving force for the hydrolysis of peptide bonds by serine proteases is the non-planar distortion of the scissile bond by the enzyme, which thereby lowers the activation energy barrier to hydrolysis by eliminating the resonance stabilization energy of the peptide bond.  相似文献   

10.
A phosphoryl exchange reaction between fructose 1-phosphate and fructose was found to be catalyzed by a membrane preparation isolated from Bacillus subtilis. The regulation of the biosynthesis of the activity in the wild type as well as in the regulation mutants fruB closely correlates with that of the membrane-bound enzyme II of the phosphoenolpyruvate fructose 1-phosphotransferase system which is known to mediate the transmembrane vectorial phosphorylation of fructose. The computed analysis of the kinetic data shows that the mechanism of the enzyme II is ping-pong, i.e. that a phosphoryl-enzyme intermediate occurs in the reaction. The apparent dissociation constants of the enzyme II/fructose 1-phosphate complex and of the phosphoryl enzyme II/fructose complex are estimated. The value of the standard free energy of the hydrolysis of the bond between the phosphoryl moiety and the enzyme suggests a covalent bonding. This intermediate is assumed to occur in the physiological functioning of the enzyme which utilizes the phosphocarrier protein HPr as phosphoryl donor. The exchange reaction is competitively inhibited by high fructose concentrations: this indicates that the same site of the enzyme binds fructose and fructose 1-phosphate, this site being accessible to fructose on the external side of the membrane when the enzyme is phosphorylated.  相似文献   

11.
12.
Cryospectrokinetic studies of zinc and cobalt carboxypeptidase A disclosed two intermediates in the hydrolysis of both peptides and depsipeptides and furnished all the rate and equilibrium constants for the reaction scheme E + S in equilibrium ES1 in equilibrium ES2---E + P [Auld, D. S., Galdes, A., Geoghegan, K. F., Holmquist, B., Martinelli, R. A., & Vallee, B. L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5041-5045]. Since the ES2 intermediate is the predominate enzyme species present at steady state, its chemical nature is deducible from subzero chemical quench studies done after steady state is established. Extrapolation of the product concentration to zero time, [P0], measures the concentration of the enzyme species in which bond cleavage has occurred. For peptides, the [P0]values are zero, indicating that no product is generated prior to turnover and therefore the ES2 intermediate involves a complex between enzyme and intact peptide substrate. For depsipeptides, [P0] values are 1 mol of produce per mole of enzyme over the entire temperature range -20 to -50 degrees C, indicating cleavage of the ester bond occurs prior to the rate-limiting step so that ES2 is more properly denoted by EP1P2, where P1 and P2 are the substrates for the reverse reaction. The rate-limiting step for depsipeptides thus involves release of the products which may occur directly or through a mandatory conformational change followed by rapid product release.  相似文献   

13.
The kinetics of acetylcholinesterase-catalyzed hydrolysis of the two cationic substrates (I and II in Russian text) was analyzed by means of the integrated Michaelis equation (3). The constants kII, kcat Km and the enzyme-product complex dissociation constant Ki were determined. (Table 1). It was shown that acetylcholine (II) binds to to the enzyme active center more effectively than the alcohol product of its hydrolysis. In case of the pipecholine derivative (I) reversed situation occurs. The different dependence of the ester substrate and appropriate alcohol binding effectiveness upon the reagent structure indicates the dissimilar location of the molecules in the active center of acetylcholinesterase. Some structural implications of the enzyme active center were discussed.  相似文献   

14.
15.
The family 38 golgi alpha-mannosidase II, thought to cleave mannosidic bonds through a double displacement mechanism involving a reaction intermediate, is a clinically important enzyme involved in glycoprotein processing. The structure of three different covalent glycosyl-enzyme intermediates have been determined to 1.2-A resolution for the Golgi alpha-mannosidase II from Drosophila melanogaster by use of fluorinated sugar analogues, both with the wild-type enzyme and a mutant enzyme in which the acid/base catalyst has been removed. All these structures reveal sugar intermediates bound in a distorted 1S5 skew boat conformation. The similarity of this conformation with that of the substrate in the recently determined structure of the Michaelis complex of a beta-mannanase (Ducros, V. M. A., Zechel, D. L., Murshudov, G. N., Gilbert, H. J., Szabo, L., Stoll, D., Withers, S. G., and Davies, G. J. (2002) Angew. Chem. Int. Ed. Engl. 41, 2824-2827) suggests that these disparate enzymes have recruited common stereoelectronic features in evolving their catalytic mechanisms.  相似文献   

16.
The rate of inactivation of succinyl-CoA:3-ketoacid coenzyme A transferase by thiol reagents is increased 3 to 100 times by very low concentrations of acyl-CoA substrates. The same maximum inactivation rate is found with acetoacetyl-CoA and succinyl-CoA. The enhanced rate of inactivation is caused by the stoichiometric formation of the enzyme-CoA intermediate and an accompanying conformation change of the enzyme. The inactivation rate provides a simple assay for the amount of enzyme present as the enzyme-CoA intermediate, using only catalytic concentrations of enzyme. This technique has been utilized to measure (a) a rate constant for hydrolysis of the enzyme-CoA intermediate of 0.10 min-1 at pH 8.1; (b) a stoichiometry of two active sites per enzyme molecule; and (c) the equilibrium constants for formation of the enzyme-CoA intermediate from dilute solutions of substrates (and hence for the overall reaction) by determining the ratio of [enzyme-CoA]/[enzyme] in the presence of a series of substrate "buffers" at different ratios of [RCOO-]/[RCOSCoA]. As the total concentration of acyl-CoA and carbosylate substrates is increased, the inactivation rate is decreased. This indicates that the Michaelis complexes are protected against inactivation.  相似文献   

17.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

18.
Case A  Stein RL 《Biochemistry》2006,45(7):2443-2452
Ubiquitin C-terminal hydrolases (UCHs) cleave Ub-X bonds (Ub is ubiquitin and X an alcohol, an amine, or a protein) through a thioester intermediate that is produced by nucleophilic attack of the Cys residue of a Cys-SH/His-Im catalytic diad. We are studying the mechanism of UCH-L1, a UCH that is implicated in Parkinson's disease, and now wish to report our initial findings. (i) Pre-steady-state kinetic studies for UCH-L1-catalyzed hydrolysis of Ub-AMC (AMC, 7-amido-4-methylcoumarin) indicate that k(cat) is rate-limited by acyl-enzyme formation. Thus, K(m) = K(s), the dissociation constant for the Michaelis complex, and k(cat) = k(2), the rate constant for acyl-enzyme formation. (ii) For K(assoc) (=K(s)(-)(1)), DeltaC(p) = -0.8 kcal mol(-)(1) deg(-)(1) and is consistent with coupling between substrate association and a conformational change of the enzyme. For k(2), DeltaS(++) = 0 and suggests that in the E-S, substrate and active site residues are precisely aligned for reaction. (iii) Solvent isotope effects are (D)K(assoc) = 0.5 and (D)k(2) = 0.9, suggesting that the substrate binds to a form of free enzyme in which the active site Cys exists as the thiol. In the resultant Michaelis complex, the diad has tautomerized to ion pair Cys-S(-)/His-ImH(+). Subsequent attack of thiolate produces the acyl-enzyme species. In contrast, isotope effects for association of UCH-L1 with transition-state analogue ubiquitin aldehyde suggest that an alternative mechanistic pathway can sometimes be available to UCH-L1 involving general base-catalyzed attack of Cys-SH by His-Im.  相似文献   

19.
Binding and hydrolysis of the beta-lactams cefotaxime, cephapirin, imipenem, and benzylpenicillin by the metallo-beta-lactamase from Bacillus cereus were studied by presteady state kinetic measurements. In all cases, the substrate was unmodified in the most populated reaction intermediate, and no chemically modified substrate species accumulated to a detectable amount. The cephalosporins tested showed similar formation rate constants for this intermediate, and they differed mostly in their decay rates. Formation of a non-productive enzyme.substrate complex was detected for imipenem. The substrate binding differences can be accounted for by considering the structural features of each substrate. The apoenzyme could not bind any of the substrates, but binding was restored when the apoenzyme was reconstituted with Zn(II), revealing that the metal ions are the main determinants of substrate binding. This evidence is in line with the lack of an optimized substrate recognition patch in B1 and B3 metallo-beta-lactamases that provides a broad substrate spectrum.  相似文献   

20.
Thymidylate synthase (TS), 5-fluorodeoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (CH2-H4folate) form a covalent complex in which a Cys thiol of TS is attached to the 6-position of FdUMP and the one-carbon unit of the cofactor is attached to the 5-position. The kinetics of formation of this covalent complex have been determined at several temperatures by semirapid quench methods. Together with previously reported data the results permit calculation of every rate and equilibrium constant in the interaction. Conversion of the noncovalent ternary complex to the corresponding covalent complex proceeds at a rate of 0.6 s-1 at 25 degrees C, and the dissociation constant for loss of CH2-H4folate from the noncovalent ternary complex is approximately 1 microM. Activation parameters for the formation of the covalent complex were shown to be Ea = 20 kcal/mol, delta G+ = 17.9 kcal/mol, delta H+ = 19.3 kcal/mol, and delta S+ = 0.005 kcal/(mol.deg). The equilibrium constant between the noncovalent and covalent ternary complexes is approximately 2 X 10(4), and the overall dissociation constant of CH2-H4folate from the covalent complex is approximately 10(-11) M. The conversion of the noncovalent ternary complex to the covalent adduct is about 12-fold slower than kcat in the normal enzymic reaction. However, because the dissociation constant for CH2-H4folate from the noncovalent ternary complex is about 10-fold lower than that from the TS-dUMP-CH2-H4folate Michaelis complex, the terms corresponding to kcat/Km are nearly equal. We propose that some of the intrinsic binding energy of CH2-H4folate may be used to facilitate formation of a 5-iminium ion intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号