首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Cortex slices, synaptosomes and C-6 glioma cells were used to study [35S]taurine uptake and its electrically-stimulated release. After exposure to taurine at two concentrations, the synaptosome preparation subsequently derived from the slices contained 41% of the particle-bound taurine and 16% of the total in the tissue. The uptake of [14C]GABA by C-6 glioma cells was inhibited 3-fold more by β-alanine than by l -DABA, whilst synaptosome preparations showed the opposite pattern, l -DABA being 2 or 3 times more effective than β-alanine. [35S]Taurine uptake inhibition by l -DABA was low for synaptosomes and C-6 glioma, whereas β-alanine showed considerable effect on C-6 glioma (41%) and slices of white matter (ependyma; 50%). Synaptosome preparations showed little effect with β-alanine. When 30 min rather than 5 min incubations were employed, β-alanine depressed [35S]taurine uptake by cortex slices by 30%. Taurine was taken up by a calcium-dependent mechanism and subcellular fractionation indicated that the synaptosome fraction showed losses commensurate with the net taurine release when low stimulation currents were used.  相似文献   

2.
Subacute methyl mercury (MeHg) intoxication was induced in adult rats following the daily intragastric administration of 1 mg MeHg/100 g body weight. Decreased [14C]leucine incorporation into cerebral and cerebellar slice protein was found. Weight loss occurred during the latent and neurotoxic phases but pair feeding did not reveal a significant defect in amino acid incorporation into slice protein. There was no decline in synaptosome protein synthesis in vitro during the latent phase but a significant decline in cerebellar and cerebral synaptosome synthesis was found during the neurotoxic phase. MeHg in vitro inhibited cerebral slice and synaptosome protein synthesis at half maximal concentrations of 7.5 and 12.5 μM respectively. Inhibition of synthesis in synaptosomes was non-competitive with K1 of 4 × 10?6M. MeHg had no effect on [14C]leucine or [14C]proline uptake into synaptosomes. There was no significant inhibition of synaptosome basal ATPase or Na + K ATPase at concentrations of MeHg (12 μM) giving half maximal inhibition of protein synthesis. No preferential inhibition of the chloramphenicol (55S) or cycloheximide sensitive components of synaptosome fraction protein synthesis was found, suggesting that the inhibition is common to both mitochondrial and extramitochondrial protein synthesizing systems. Addition of nucleotides and/or atractylate failed to influence protein synthesis and did not reverse the MeHg inhibition. Mannitol, as a replacement for the predominant cation species of the incubation medium, gave 40% inhibition of protein synthesis in the control but protected against further inhibition by MeHg.  相似文献   

3.
Abstract— The metabolic properties of synaptosome beds (deposits positioned between nylon gauzes) were studied. They respired, glycolysed, produced ATP and phosphocreatine, and metabolized [U-14C]glucose to glutamate, aspartate, alanine and GABA at similar rates to synaptosome suspensions. Metabolic inhibitors caused massive loss of amino acids from the beds. Synaptosome beds also responded metabolically to electrical pulses; respiration and lactate production increasing by 40 per cent. Differential release of glutamate, aspartate and GABA occurred during electrical stimulation, maximum release being after 10–15 min of stimulation. This differential release also occurred when medium potassium was increased. Omitting and chelating calcium reduced or abolished this response with both forms of stimulation. Including amino acid analogues (β-aminobutyric acid, α, γ-diaminobutyric acid and N -acetyl glutamic acid) in the incubation medium changed the patterns of amino acids present in the medium, indicating that under normal conditions active amino acid uptake processes are occurring in synaptosomes. Tetrodotoxin and ouabain also interfered with amino acid release without greatly affecting the response to stimulation. Cerebral cortex slices incubated between gauzes also showed a glycolytic response to electrical stimulation. GABA was the only amino acid showing a significant increase in the amount released with both potassium and electrical stimulation of the slices.  相似文献   

4.
—The urinary excretion of labelled metabolites was measured in dogs which had been injected intravenously or intraventricularly with [3H]norepinephrine or [14C]dopamine. [3H]Norepinephrine injected by either route produced more labelled 3-methoxy-4-hydroxy-phenylglycol than 3-methoxy-4-hydroxymandelic acid, as did [14C]dopamine after intravenous administration. In contrast, following the intraventricular injection of [14C]dopamine, more [14C]3-methoxy-4-hydroxymandelic acid was formed than [14C]3-methoxy-4-hydroxyphenylglycol. These observations suggest that the metabolism of exogenously-administered and endogenously-formed norepinephrine may proceed through different routes and that the predominant metabolite of norepinephrine in canine brain may be 3-methoxy-4-hydroxymandelic acid rather than 3-methoxy-4-hydroxyphenylglycol.  相似文献   

5.
Following the intracerebral administration of [35S]cystathionine, the synaptosome fraction of rat brain was labelled, the greatest uptake of amino acid being associated with hypothalamus.The uptake of [35S]cystathionine by synaptosome preparations isolated from different regions of brain, was typical of that exhibited by amino acids which are not neurotransmitters.Depolarization of the synaptic membrane had no effect on the efflux of [35S]cystathionine from preloaded synaptosomes.The intracerebral administration of cystathionine resulted in an elevation of the levels of brain cyclic AMP, the effect being particularly evident in the cerebellum. Attempts to reproduce this effect in vitro were unsuccessful.  相似文献   

6.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

7.
Abstract— 3,3′,5-Triiodothyronine (T3) inhibited L-[14C]leucine uptake into synaptosomes. Inhibition was competitive with a Ki of 3.1 × 10?5m . Hofstee plot revealed an inverted hyperbolic curve suggestive of a two carrier or carrier plus diffusion mediated system for amino acid uptake. Both the carrier mediated and diffusional components were inhibited by thyroid analogues. l -Thyroxine and analogues inhibited the incorporation of l -[14C] leucine into cerebral synaptosome protein. At 50 μm , the triiodo-compounds were more inhibitory than tetraiodo->3,5-triiodo-l -thyronine >3,3′,5-triiodothyropro-pionic> l -thyroxine >3,5-diiodo-l -tyrosine. Thyroid analogue inhibition was not seen in liver or brain mitochondrial protein synthesis. 3,3′,5-Triiodothyronine had no effect on respiratory control or 2,4-DNP stimulated synaptosome respiration supported by malate plus pyruvate. Ouabain did not inhibit [14C]leucine uptake into adult synaptosomes. There was synergistic inhibition of synaptosome protein synthesis by thyroid analogues in the presence of 0.2 mm -ouabain. 3,3′,5-Triiodothyronine had no effect on synaptosome fraction ATPase or Na-K ATPase. Addition of T3 induced further inhibition of synaptosome protein synthesis in the presence of either chloramphenicol (100μm ) or cycloheximide (50μg/ml). [14C]Glycine uptake and incorporation into synaptosome protein was inhibited by 3,3′,5-triiodothyronine. There was no inhibition of [14C]proline uptake or incorporation. The above evidence and kinetic data strongly favor a selective competitive block in amino acid transport at the synaptosome membrane leading to a decreased rate of protein synthesis.  相似文献   

8.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

9.
—The enzymatic decarboxylation of l -DOPA was measured in isotonic dextrose homogenates of different regions of the human brain by estimating 14CO2 evolved from tracer amounts of d l -DOPA[carboxy1-14C]. Enzyme activity was linear with respect to tissue concentration and time of incubation. The reaction exhibited a pH maximum at 7·0, was completely dependent upon the presence of high concentrations of pyridoxal phosphate, proceeded at the same rate in an atmosphere of air and nitrogen, and produced dopamine in addition to CO2 as a reaction product. The enzyme preparation behaved like an aromatic l -amino acid decarboxylase: it also decarboxylated o-tyrosine and when incubated with 5-hydroxytryptophan, serotonin was isolated as the reaction product; but it was devoid of activity towards d -DOPA[carboxy1-14C]. Within the human brain, l -DOPA decarboxylase was most active in the putamen and caudate nucleus; the pineal gland, hypothalamus, and the reticular formation and dorsal raphe areas of the mesencephalon exhibited considerable activity. Areas of cerebral cortex exhibited very low enzymatic activity and in regions composed predominantly of white matter, l -DOPA decarboxylase activity was not significantly above blank values. The activity of l -DOPA decarboxylase in the human putamen and caudate nucleus tended to decrease with the age of the patients; in comparatively young subjects (46 yr old) the enzyme activity compared favourably with that found, by means of the same assay technique, in the caudate nucleus of the cat.  相似文献   

10.
RATE OF STEROL FORMATION BY RAT BRAIN GLIA AND NEURONS IN VITRO AND IN VIVO   总被引:1,自引:1,他引:0  
The ability of 11-day-old rat glial and neuronal cells to biosynthesize sterol was studied as a function of time in vivo and in vitro. The in vitro experiments utilized [2-14C]mevalonic acid as precursor. Glial-enriched cell preparations demonstrated a greater ability to incorporate [2-14C]mevalonic acid into isoprenoid material than did neuronal-enriched preparations. Approximately 4 h were required for maximal uptake of labelled mevalonate by the glial preparations. Further metabolism of the isoprenoid material, involving squalene turnover and sterol demethylation, was still evident even after 15 h of incubation. In vivo, sterol biosynthesis was studied by intraperitoneal injection of sodium [2-14C]acetate and [U-14C]glucose, sacrifice of the animals at 2 or 24 h, subsequent isolation of glial- and neuronal-cell enriched fractions and analysis of labelled isoprenoid material. Glial-enriched fractions again contained the bulk of the labelled isoprenoid material.  相似文献   

11.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

12.
Isolated nerve terminals (synaptosome beds) were prepared from the neocortex of guinea pig and their ability to accumulate and release adenine nucleotides was studied. Synaptosome beds prelabelled with [14C]adenosine released newly synthesized [14C] adenine derivatives on superfusion. Electrical stimulation and K+ depolarization gave augmented output of both [14C] adenine derivatives and lactate from the preparations. Action of metabolic inhibitors on this output was examined. During incubation and superfusion, the synaptosomes displayed glycolysis and synthesis of ATP. Supply of adenine derivatives to the nerve terminals also occurred by translocation from other parts of the tissue.  相似文献   

13.
Abstract— Tetrodotoxin, Ca2+-deprivation and high-Mg2+ were used in an effort to identify the portion of the evoked release of endogenous amino acids, labelled via metabolism of [14C]-glucose, and several exogenous labelled amino acids, that came from nerve terminals when slices of guinea pig cerebral cortex were superfused with glucose-free solutions and stimulated electrically. With some exceptions, spontaneous release of labelled amino acids was decreased by 2 μm -tetrodotoxin but increased in Ca2+-free medium and in solutions containing an extra 24 mm -MgCl2. Tetrodotoxin suppressed 85–90% of the stimulated release of almost all labelled amino acids, but had a smaller effect on the release of endogenous 14C-labelled threonine-serine-glutamine (unseparated). In Ca2+-free solution, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 80–90%, but that of endogenous 14C-labelled threonine-serine-glutamine was unaffected as was most of the release of the other labelled amino acids. In medium containing an extra 24mM-MgCl2, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 75-85%, that of exogenous labelled aspartate and GABA by 50–65%, but the release of the other labelled amino acids was unaffected. The control stimulated releases of endogenous 14C-labelled glutamate, aspartate and GABA were much larger than those of other labelled amino acids but were reduced by tetrodotoxin, Ca2+-deprivation and high-Mg2+ to a level similar to that of the control stimulated releases of the other labelled amino acids. These results suggest that almost all of the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA came from nerve terminals while those of the other labelled amino acids came from other tissue elements. In addition, they are in accord with a transmitter role for glutamate, aspartate and GABA in cerebral cortex.  相似文献   

14.
(1) Synaptosomal fractions from guinea pig neocortical dispersions prepared in sucrose solutions were deposited from saline media as ‘beds’ on nylon bolting cloth. When incubated with 0.5–10 μm -[14C]adenine or adenosine in glucose bicarbonate salines, uptake of 14C from adenosine proceeded at about four times the rate of uptake of [14C]adenine. This contrasted with the relative uptake of the two compounds to neocortical tissue slices or to beds made from mitochondrial fractions, where uptake was similar with the two precursors. Uptake of both precursors to synaptosome beds was much greater than uptake of inosine. (2) Synaptosome beds, [14C]adenosine-loaded, contained 88 per cent of the 14C as 5′-adenine nucleotides, the remainder being present as cyclic AMP, inosine, hypoxanthine and adenosine. When superfused, the 14C output consisted mainly of adenosine, inosine and hypoxanthine, with some 7 per cent of 5′-nucleotides and 4 per cent of cyclic AMP. (3) Electrical pulses and the addition of 50 mm -KCl each increased the efflux of 14C from superfused [14C]adenosine-loaded beds. The superfusates issuing after excitation contained the same 14C-labelled compounds as issued before, with a small increase in the proportional yield of adenosine. The additional output of 14C following electrical pulses was diminished by about 50 per cent by 0.5 μm -tetrodotoxin while that following KCl was not affected; it was however prevented when the superfusing fluids were free of Ca2+.  相似文献   

15.
《Insect Biochemistry》1987,17(6):911-918
High yields of relatively pure, morphologically well-preserved, functionally competent synaptosomes were prepared from brains of moths of Mamestra configurata using a modified microscale Ficoll flotation technique. Typical preparations yielded 10 mg of synaptosomal protein per gram of moth brains. The moth brain synaptosomes were virtually free of endoplasmic reticulum and mitochondrial contaminants as judged from marker enzyme studies and electron microscopy.Voltage-dependent Ca2+ ion transport was studied using the moth brain synaptosome preparations. Synaptosomes took up radioactive 45Ca2+ from the incubation medium. The rate of uptake was increased up to three-fold when the synaptosomes were incubated in a depolarizing, high [K+] medium. Time course studies indicated that voltage-dependent Ca2+ uptake was composed of an early (<2 sec) fast phase and a late (>10 sec) slow phase.ATP-dependent Ca2+ ion transport was studied in moth brain synaptosome membrane vesicles prepared from synaptosomes by osmotic shock and purified on a second Ficoll gradient. The inside-out synaptosome membrane vesicles contained an ATP-dependent calcium ion pump which transported 45Ca2+ from the incuation medium into the interior of the vesicle in the presence of ATP. The calcium ionophore A23187 rapidly released accumulated 45Ca2+ from the vesicles. The maximal rate of ATP-dependent Ca2+ transport occurred at a [Ca2+ free] of 0.1 to 0.2 nM, indicating that the transport process has a very high affinity for Ca2+ ions.  相似文献   

16.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

17.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

18.
—The release of newly synthesized acetylcholine (ACh) by cortical slices from rat brain in the presence of 25 mm -KCl was studied. The slices were incubated for 5 min in a medium containing both [2-14C]pyruvate and choline labelled with 3 deuterium atoms (choline-d3) in order to label at the same time the acetyl moiety and the choline moiety of ACh. The non-labelled ACh and the ACh-d3 were measured by pyrolysis-gas chromatography/mass spectrometry, and the [I4C]ACh by liquid scintillation counting. It was found that the newly formed [4C]ACh as well as the newly formed ACh-d3 had a more than 2.5 times greater probability of being released than the preformed non-labelled ACh. These findings strongly suggest that it is not simply the ACh synthesized immediately inside the nerve ending membrane from incoming undiluted labelled choline, which is preferentially released, but that all newly formed ACh has a greater probability of being released than preformed ACh. No preferential release of newly formed ACh was observed when the incubation medium contained 5.6 mm -pyruvate instead of 10 mm -glucose + 0.6 mm -pyruvate. The cause of this difference remains unexplained.  相似文献   

19.
—The uptake of 36Cl into incubated synaptosomes was found to reach a steady state within 30 min enabling estimates of the amount of intra-synaptosomal chloride to be made. There was an excess in the total charge of sodium and potassium over that of chloride within the synaptosomes. This deficit of permeant anions is balanced within the synaptosome by negatively charged protein and other anions such as aspartate and phosphate. Their combined amount could be estimated from the magnitude of the anion deficit. The net valency of the substances causing the anion deficit was determined by relating the ion content to the intra-synaptosomal volume when metabolic activity was blocked. It was found to be similar to that of cerebral cortex tissue in vivo. The intra-synaptosomal volume was found to change so that the osmolarity of the synaptosomal contents equalled the osmolarity of the incubation medium. A method of determining the intra-synaptosomal volume by measuring the ion content is described. The results from this method are compared with those obtained using conventional space markers.  相似文献   

20.
Abstract— The accumulation, metabolism and stimulated-induced release of 5-HT in the nervous system of the snail was studied. When nervous tissue was incubated at 24°C in a medium containing [14C]5-HT or [3H]tryptophan, tissue: medium ratios of about 25:1 and 4:1 respectively were obtained after 45 min incubation. The process responsible for [14C]5-HT accumulation showed properties of an active transport system: it was temperature sensitive and was greatly inhibited by dinitrophenol and ouabain. Furthermore, the accumulation process was inhibited by imipramine and desipramine. Of a number of analogues of indole, N-acetyl-5-HT and 5-hydroxytryptophan were the most potent in the inhibition of the accumulation of [14C]5-HT. The presence of a large molar excess of amino acids had little effect. A small amount (less than 14 per cent) of the accumulated [14C]5-HT was metabolized to form 5-hydroxyindole acetic acid, even after long periods (2 h) of incubation. The accumulated [3H]tryptophan was metabolized to form 5-hydroxytryptophan and 5-HT; the content of formed [3H]5-HT increased with incubation time whilst the [3H]5-hydroxytryptophan remained more or less constant. The presence of p-chlorophenylalanine in the incubation medium did not interfere with the accumulation of [3H]tryptophan, though it inhibited the formation of [3H]5-hydroxytryptophan and to a greater extent [3H]5-HT. A rapid efflux of the accumulated [14C]5-HT from snail nervous tissue was observed on electrical stimulation. Slower release resulted when the Ca2+ ion content of the incubation medium was replaced by Mg2+ ions. There is also a slight efflux of radioactive substances following electrical stimulation in tissues previously incubated in [3H]tryptophan. Most of this radioactivity was attributed to the formed [3H]5-HT. The data support the idea that 5-HT is a transmitter-substance in the snail Helix pomatia, and that re-uptake of the substance is a method of inactivating the released amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号