首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductor quantum dots (QDs) are nanoparticles in which charge carriers are three dimensionally confined or quantum confined. The quantum confinement provides size-tunable absorption bands and emission color to QDs. Also, the photoluminescence (PL) of QDs is exceptionally bright and stable, making them potential candidates for biomedical imaging and therapeutic interventions. Although fluorescence imaging and photodynamic therapy (PDT) of cancer have many advantages over imaging using ionizing radiations and chemo and radiation therapies, advancement of PDT is limited due to the poor availability of photostable and NIR fluorophores and photosensitizing (PS) drugs. With the introduction of biocompatible and NIR QDs, fluorescence imaging and PDT of cancer have received new dimensions and drive. In this review, we summarize the prospects of QDs for imaging and PDT of cancer. Specifically, synthesis of visible and NIR QDs, targeting cancer cells with QDs, in vitro and in vivo cancer imaging, multimodality, preparation of QD-PS conjugates and their energy transfer, photosensitized production of reactive oxygen intermediates (ROI), and the prospects and remaining issues in the advancement of QD probes for imaging and PDT of cancer are summarized.  相似文献   

2.
In vivo molecular and cellular imaging with quantum dots   总被引:27,自引:0,他引:27  
Quantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probe for in vivo biomolecular and cellular imaging. In comparison with organic dyes and fluorescent proteins, QDs have unique optical and electronic properties: size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to the development of multifunctional nanoparticle probes that are very bright and stable under complex in vivo conditions. A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers and linking the polymer coating to tumor-targeting ligands and drug delivery functionalities. Polymer-encapsulated QDs are essentially nontoxic to cells and animals, but their long-term in vivo toxicity and degradation need more careful study. Bioconjugated QDs have raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells, animal models and possibly in humans.  相似文献   

3.
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens.  相似文献   

4.
扫描近场光学显微镜突破衍射极限,具有纳米量级的空间分辨率,量子点(QD s)标记有荧光强度高且抗光漂白能力强等优点。结合上述两种技术,对人胃腺癌SGC-7901细胞膜表面特异性结合的叶酸受体(FR)进行成像探测,获得了叶酸受体在SGC-7901细胞膜表面上的分布,以及细胞内化外源性叶酸过程中叶酸受体在细胞膜表面的分布变化,成像的光学分辨率达到120 nm。实验结果表明:特异性结合的叶酸受体在SGC-7901细胞膜表面的分布,绝大部分是以聚集体的形式存在。随着SGC-7901细胞内化叶酸量的增加,叶酸受体在细胞膜表面的分布密度逐渐降低,并在经过120 m in左右趋于稳定。上述方法和手段为实现单细胞水平上靶点分布和变化的长期监测,肿瘤细胞内化受体的机制研究提供了新的技术途径。  相似文献   

5.
Potentials and pitfalls of fluorescent quantum dots for biological imaging   总被引:17,自引:0,他引:17  
Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), have several unique optical and chemical features. These features make them desirable fluorescent tags for cell and developmental biological applications that require long-term, multi-target and highly sensitive imaging. The improved synthesis of water-stable QDs, the development of approaches to label cells efficiently with QDs, and improvements in conjugating QDs to specific biomolecules have triggered the recent explosion in their use in biological imaging. Although there have been many successes in using QDs for biological applications, limitations remain that must be overcome before these powerful tools can be used routinely by biologists.  相似文献   

6.
Mo  Dan  Hu  Liang  Zeng  Guangming  Chen  Guiqiu  Wan  Jia  Yu  Zhigang  Huang  Zhenzhen  He  Kai  Zhang  Chen  Cheng  Min 《Applied microbiology and biotechnology》2017,101(7):2713-2733

The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.

  相似文献   

7.
Luminescent semiconductor quantum dots (QDs) are a new class of fluorescent label with wide-ranging applications for cell imaging. The electron density and elemental composition of these materials permit the extension of their use as probes in conventional electron microscopy (TEM) and energy-filtered TEM (EFTEM). Here we illustrate the feasibility of using streptavidin-conjugated QDs as TEM tags by labeling a nuclear protein on cell sections and obtaining correlative fluorescence and TEM data. We also show that QD probes can be employed in conjunction with immunogold for co-localization of proteins at the ultrastructural level. Furthermore, by obtaining cadmium elemental maps of CdSe/ZnS QDs distributed on a nuclear structure, we demonstrate the potential of QDs for co-localization of multiple proteins when used in combination with EFTEM.  相似文献   

8.
A new class of zinc oxide quantum dots (ZnO QDs) was investigated as nanoprobes for targeting cancer cells in vitro. ZnO nanoparticles were synthesized using conventional sol–gel method and encapsulated using trimethoxy aminopropyl silane. Transferrin, the ligand targeting the cancer cells, was conjugated to the ZnO QDs. In vitro imaging studies using MDA-MB-231 showed the biocompatible ZnO nanoprobe selectively binding to the cell surface receptor and internalizing through receptor-mediated endocytosis. Time-lapsed photobleaching studies indicate the ZnO QDs to be resistant to photobleaching, making them suitable for long term imaging purpose. Investigation of the ZnO nanoprobe as a platform for sensitive bioassays indicates that it can be used as an alternative fluoroprobe for cancer cell targeting and sensing applications.  相似文献   

9.
In this study, we report for the first time a one‐pot approach for the synthesis of new CdSeTeS quaternary‐alloyed quantum dots (QDs) in aqueous phase by microwave irradiation. CdCl2 was used as a Cd precursor during synthesis, NaHTe and NaHSe were used as Te and Se precursors and mercaptopropionic acid (MPA) was used as a stabilizer and source of sulfur. A series of quaternary‐alloyed QDs of different sizes were prepared. CdSeTeS QDs exhibited a wide emission range from 549 to 709 nm and high quantum yield (QY) up to 57.7 %. Most importantly, the quaternary‐alloyed QDs possessed significantly long fluorescence lifetimes > 100 ns as well as excellent photostability. Results of high‐resolution transmission electron microscopy (HRTEM), energy dispersive X‐ray spectroscopy (EDX) and powder X‐ray diffraction (XRD) spectroscopy showed that the nanocrystals possessed a quaternary alloy structure with good crystallinity. Fluorescence correlation spectroscopy (FCS) showed that QDs possessed good water solubility and monodispersity in aqueous solution. Furthermore, CdSeTeS QDs were modified with alpha‐thio‐omega‐carboxy poly(ethylene glycol) (HS‐PEG‐COOH) and the modified QDs were linked to anti‐epidermal growth factor receptor (EGFR) antibodies. QDs with the EGFR antibodies as labeling probes were successfully applied to targeted imaging for EGFR on the surface of SiHa cervical cancer cells. We believe that CdSeTeS QDs can become useful probes for in vivo targeted imaging and clinical diagnosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Quantum dots (QDs) have great promise in biological imaging, and as this promise is realized, there has been increasing interest in combining the benefits of QDs with those of other materials to yield composites with multifunctional properties. One of the most common materials combined with QDs is magnetic materials, either as ions (e.g. gadolinium) or as nanoparticles (e.g. superparamagnetic iron oxide nanoparticles, SPIONs). The fluorescent property of the QDs permits visualization, whereas the magnetic property of the composite enables imaging, magnetic separation, and may even have therapeutic benefit. In this review, the synthesis of fluorescent–magnetic nanoparticles, including magnetic QDs is explored; and the applications of these materials in imaging, separations, and theranostics are discussed. As the properties of these materials continue to improve, QDs have the potential to greatly impact biological imaging, diagnostics, and treatment.  相似文献   

11.
In vivo cancer targeting and imaging with semiconductor quantum dots   总被引:63,自引:0,他引:63  
We describe the development of multifunctional nanoparticle probes based on semiconductor quantum dots (QDs) for cancer targeting and imaging in living animals. The structural design involves encapsulating luminescent QDs with an ABC triblock copolymer and linking this amphiphilic polymer to tumor-targeting ligands and drug-delivery functionalities. In vivo targeting studies of human prostate cancer growing in nude mice indicate that the QD probes accumulate at tumors both by the enhanced permeability and retention of tumor sites and by antibody binding to cancer-specific cell surface biomarkers. Using both subcutaneous injection of QD-tagged cancer cells and systemic injection of multifunctional QD probes, we have achieved sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions. We have also integrated a whole-body macro-illumination system with wavelength-resolved spectral imaging for efficient background removal and precise delineation of weak spectral signatures. These results raise new possibilities for ultrasensitive and multiplexed imaging of molecular targets in vivo.  相似文献   

12.
Recent developments in quantum dot (QD) technology have paved the way for using QDs as optical contrast agents for in vivo imaging. Pioneering papers showed the use of QDs as luminescent contrast agents for imaging cancer and guiding cancer surgery. The possible future use of QDs for clinical applications is expected to have a significant impact, however many challenges in this field have yet to be overcome.  相似文献   

13.
量子点表面经生物分子或药物分子修饰而具有生物功能.功能化量子点具有独特的光学性质和生物相容性,在生物医学光学诊断和治疗领域具有广泛的应用.本文简要介绍了功能化量子点制备及修饰方法,综合评述了量子点在肿瘤活体诊断和治疗中的应用,包括活体淋巴结成像、血管动态成像、肿瘤成像和抗肿瘤药物示踪等,讨论了功能化量子点在肿瘤活体诊断和治疗中的应用前景以及面临的挑战.  相似文献   

14.
We developed a new method for imaging the movement of targeted proteins in living cancer cells with photostable and bright quantum dots (QDs). QDs were conjugated with various molecules and proteins, such as phalloidin, anti-tubulin antibody and kinesin. These bioconjugated QDs were mixed with a transfection reagent and successfully internalized into living cells. The movements of individual QDs were tracked for long periods of time. Phalloidin conjugated QDs bound to actin filaments and showed almost no movement. In contrast, anti-tubulin antibody conjugated QDs bound to microtubules and revealed dynamic movement of microtubules. Kinesin showed an interesting behavior whereby kinesin came to be almost paused briefly for a few seconds and then moved once again. This is in direct contrast to the smoothly continuous movement of kinesin in an in vitro assay. The maximum velocity of kinesin in cells was faster than that in the in vitro assay. These results suggest that intracellular movement of kinesin is different from that in the in vitro assay. This newly described method will be a powerful tool for investigating the functions of proteins in living cells.  相似文献   

15.
Cai W  Chen X 《Nature protocols》2008,3(1):89-96
To take full advantage of the unique optical properties of quantum dots (QDs) and expedite future near-infrared fluorescence (NIRF) imaging applications, QDs need to be effectively, specifically and reliably directed to a specific organ or disease site after systemic administration. Recently, we reported the use of peptide-conjugated QDs for non-invasive NIRF imaging of tumor vasculature markers in small animal models. In this protocol, we describe the detailed procedure for the preparation of such peptide-conjugated QDs using commercially available PEG-coated QDs and arginine-glycine-aspartic acid (RGD) peptides. Conjugation of the thiolated RGD peptide to the QDs was achieved through a heterobifunctional linker, 4-maleimidobutyric acid N-succinimidyl ester. Competitive cell binding assay, using (125)I-echistatin as the radioligand, and live cell staining were carried out to confirm the successful attachment of the RGD peptides to the QD surface before in vivo imaging of tumor-bearing mice. In general, QD conjugation and in vitro validation of the peptide-conjugated QDs can be accomplished within 1-2 d; in vivo imaging will take another 1-2 d depending on the experimental design.  相似文献   

16.
Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.  相似文献   

17.
The interaction between nanoparticles (NPs) and DNA is of significance for both application and implication research of NPs. In this study, a single-molecule imaging technique based on atomic force microscopy (AFM) was employed to probe the NP-DNA interactions with quantum dots (QDs) as model NPs. Reproducible high-quality images of single DNA molecules in air and in liquids were acquired on mica by optimizing sample preparation conditions. Furthermore, the binding of QDs to DNA was explored using AFM. The DNA concentration was found to be a key factor influencing AFM imaging quality. In air and liquids, the optimal DNA concentration for imaging DNA molecules was approximately 2.5 and 0.25 μg/mL, and that for imaging DNA binding with QDs was 0.5 and 0.25 μg/mL, respectively. In the presence of QDs, the DNA conformation was altered with the formation of DNA condensates. Finally, the fine conformation of QD-DNA binding sites was examined to analyze the binding mechanisms. This work will benefit investigations of NP-DNA interactions and the understanding of the structure of NP-DNA bioconjugates. See accompanying article by Wang DOI: 10.1002/biot.201200309  相似文献   

18.
Developing methods to label viruses with fluorescent moieties has its merits in elucidating viral infection mechanisms and exploring novel antiviral therapeutics. Fluorescent quantum dots (QDs), an emerging probe for biological imaging and medical diagnostics, were employed in this study to tag retrovirus encoding enhanced green fluorescent protein (EGFP) genes. Electrostatic repulsion forces generated from both negatively charged retrovirus and QDs were neutralized by cationic Polybrene, forming colloidal complexes of QDs-virus. By examining the level of EGFP expression in 3T3 fibroblast cells treated with QDs-tagged retroviruses for 24 hours, the infectivity of retrovirus incorporated with QDs was shown to be only slightly decreased. Moreover, the imaging of QDs can be detected in the cellular milieu. In summary, the mild method developed here makes QDs-tagged virus a potential imaging probe for direct tracking the infection process and monitoring distribution of viral particles in infected cells.  相似文献   

19.
N Won  S Jeong  K Kim  J Kwag  J Park  S Geol Kim  S Kim 《Molecular imaging》2012,11(4):338-352
AbstractPotential advantages of quantum dot (QD) imaging in the second optical window (SOW) at 1,000 to 1,400 nm over the first optical window (FOW) at 700 to 900 nm have attracted much interest. QDs that emit at 800 nm (800QDs) and QDs that emit at 1,300 nm (1,300QDs) are used to investigate the imaging depths at the FOW and SOW. QD images in biologic tissues are processed binarized via global thresholding method, and the imaging depths are determined using the criteria of contrast to noise ratio and relative apparent size. Owing to the reduced scattering in the SOW, imaging depth in skin can be extended by approximately three times for 1,300QD/SOW over 800QD/FOW. In liver, excitation of 1,300QD/SOW can be shifted to longer wavelengths; thus, the imaging depth can be extended by 1.4 times. Effects of quantum yield (QY), concentration, incidence angle, polarization, and fluence rate F on imaging depth are comprehensively studied. Under F approved by the Food and Drug Administration, 1,300QDs with 50% QY can reach imaging depths of 29.7 mm in liver and 17.5 mm in skin. A time-gated excitation using 1,000 times higher F pulses can obtain the imaging depth of ≈ 5 cm. To validate our estimates, in vivo whole-body imaging experiments are performed using small-animal models.  相似文献   

20.
Quantum dots (QDs) are a novel type of small, photostable and bright fluorophores that have been successfully applied to mammalian and human live cell imaging. In this study, highly dispersive water-soluble mercaptoacetic acid (MAA)-coated CdSe/ZnS QDs were synthesized, which were suitable for investigation as fluorescent probe labels. The treatment of maize seedling roots with QDs showed that the surfactant silwet L-77 aided the efficient transport of QDs into maize roots. Under a concentration ranging from 0.128 to 1.28 μM, QDs caused very low cytotoxicity on maize seed germination and root growth. The addition of mercuric chloride to the Hoagland solution resulted in a decrease of QD content in root tissues, and this decrease was reversed upon the addition of β-mercaptoethanol, which suggests that mercury-sensitive processes play a significant role in regulating QD flow in the maize root system. We speculate that the apoplastic pathway can contribute substantially to the total quantity of QDs reaching the stele. Therefore, based on this transport approach, MAA-coated QDs can be utilized for live imaging in plant systems to verify known physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号